1. APPENDIX 0: RMN AND SPIN DYNAMICS
[SL192,HAR8T]

Let s consider a probe of crystal or liquid crystal in a static magnetic field By = Bge..

A nematic liquid crystal (here the 5CB) in a static magnetig.fiel

The 'H and '3C present in the probe, having magnetic properties, via their spin
1/2,
- interactuate with the field By ( Zeeman interaction)
- mteractuate between them ( dipolar interaction)
the NMR(in semi-ordered to ordered phases) is dedicated to the study of these
interactions.
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Representation of the dominant interactions in a NMR sample



1.1. The Zeeman interaction

The Zeeman interaction hamiltonian of a ! with the field By is:

H, = —pyy By = —y hBoI* = —~Ruwpl”®

(77 is the gyromagnetic ratio of the 'H, wﬁ; its Zeeman frequency)
The energies and wave functions solutions of the Schridinger’s time-independent
equation are represented as follows:
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Shematic representation of the two possible spin configurations
(parallel (| + > ) and antiparallel (| - = )to By), and their
respective energies.

1.2. Inducing transitions between energy levels: the magnetic
resonance.

1.2.1. Perturbated hamiltonian

In order to induce transitions between the states of the Zeeman hamiltonian, me need
a perturbation:
-of resonant frecuency = corresponding to the natural transition frecuency
between the Zeeman levels of the system,
-that adds non-diagonal terms in the hamiltonian — coupling terms, between
states. '
We can achieve it with a perturbative magnetic field By (t) L By :

B, (t) 2B, cos(wt)e,
W =~ wp (resonance condition)

By « By (perturbation condition)
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The static (By) and ascillating perturbating (By) magretic fields,

The perturbated hamiltonian, in the laboratory frame, is:
H= —fwu;I‘ — 2hwn r COS{wt}IT, Wy = ’)‘131

1.2.2. Rotating frame
Let ’s consider the change of function:

T

(physically, [t >is the rotated of | > of an angle wt around e, from here the

expression: rotating frame.)
|4 > is solution of the new Schrédinger’s equation:

' > 1
S 7 H
a CwtY
with
H' = —hlwoy —w)I* - fuwry p I
which is the hamiltonian of one spin in an effective field:
w

Besr = (B - —') e; + Bie;
Ti

On resonance (w0 = wor = 41 Bo), Bey = Ba.
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The effective fields as seen from the rotating frame.
The spin wave functions defined in this frame will have the same behaviour as spin functions in
an immobile frame, in presence of a fild By
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1.2.3. Effect of a resonant pulse
Effect on one spin

Let’s consider [¢/(0) >= h{:{ﬂ} =+ >,
We have [/(t) >= e_q'!wf{ﬂ} S=eTWurtly 5 o cos(wy i)+ >, ~ sin(wy ft)|— >,

Interpretation in terms of energy-level populations:

Let ’s consider an ensamble of N non-interacting ' H spins, in presence of By.The
partition Boltzmann law gives us the following populations for the energy levels:

E 4
hoo21 #I'} Population Nexp(- hao/2kT)

-hw /2t m | +> Population Nexp(+ hwo/2kT)

Shematic representation of the populations of the o respective
energy levels. There is a thermodynamical excess of spins

« parallel » to By, that leads to the macroscopic detectable
magnelization,

Having an excess of spins parallel to Hy than antiparallels, the probe presents a
macroscopic magnetization:

1 hew
My = E‘hﬁ‘?rﬁﬂ: = Myre,

When we applicate the resonant pulse, we induce transitions between the two
energy levels, changing the relative populations.
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Shematic representation of the populations of the two respective
energy levels, as is applicated the resonant field

The resonant field, inducing transitions between the levels, also
modifies the macroscopic magnetization.

Interpretation in terms of density matrix; effect on the macroscopic mag-
netization.

In thermal equilibrium, without resonant perturbation, the density matrix of the
system is:

_ _ 1 H _ 1 Fuwrgy 2\ 1 Fuwrny -
E{m—é‘ﬂ—ﬂﬁﬂl}( kT)_i?_“"exp(_k‘TI =N 1+JETI
Following a pulse # = wg t of resonant field 2B, cos(wort)e:( Xy pulse) we have:

o(t) = exp (*it%) o(0) exp (51%)

say, in the rotating frame

o(t) = exp (—iwtI%) p(0) exp (iw, st 17)
- 2—:\,' (1 + E:_’TE {cus{w”t}l" - Sin(ﬂ.’ul}ﬂ})

And the macroscopic magnetization of the probe is:
M(t) =Tr (g(t)M) = My (cos(wirt)e; ~ sin(wit)ey)

say, the magnetization precesses around the effective field with angular velocity
Wy,
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Shematic representation of precession of the macroscopic
magnetization, first aligned with B0, as applicated the resonant
field.

The magnetization, in the rotating frame, precesses around the
effective field.

1.3. Detection of the NMR signal

1.3.1. Ideal case

We 've seen that following a Xz pulse, the macroscopic magnetization is launched to
the xy plane:

When we turn off the radiofrequency, we let the macroscopic magnetization in
presence of the static magnetic field By

et > tg) = exp (~iwor (¢~ t5)) elts) exp (iwor (¢~ 15))
1 Fiiws .
= oN (l — _k'_j"{ﬂ [cos(wn;(t - t*]l}p — sinfwos(t — tz :I}II})
And the macroscopic magnetization is:

M(t) =Tr (e(t)M) = My (- m(“-"ﬂf“"‘ t3))ey + sin(wor(t — t5))es)

say, the macroscopic magnetization precesses around By with angular velocity woy.
This modulation of the precessing transversal magnetization produces, by induc-
tion, a f.e.m in a coil, proportional to the magnetization in the axis of the coil
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.. ".{a) Coil containing sample. In thermal equilibrium an excess of moments is parallel
to Hy. (b) and (¢) Following a 90-degree pulse, the excess moments precess perpendicular
‘1o Ify




The Fourier transform of this f.e.m is the NMR spectra of the studied sample.
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The ideal (no relaxation, only one frequency) fem and its fourier transform.

1.3.2. Real case
A real probe:

-Can contain atoms of the same specie, but non-equivalent = their surround-
ings differ, from here the local magnetic field, fom here the resonant frequency.

HD)  HE)
H(4)
H(3) ~H(4)

H(4)
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Egquivalent and Rok-¢ quivalent atoms

Because of their identic surroundings, the 'H labelled with the samie number are magneiically
equivalent. Groups with different numbers are mon-equivalent.

- Presents a transversal magnetization that, for various reasons, decays in
time.
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More realistic fem and the corresponding spectra

-an oscillation at the frequencywgin the fem gives a line atwein the spectra;
~an attenuation of characteristic timel'in the fem gives a line of widthl/T'in the spectra



1.3.3. Informations available via the spectra

- the characteristic resonance frequencies of each atom or group of equivalent
atoms {WQJI ,uwz,wm,...]l,
- the characteristic times in which decay the corresponding magnetizations
(T2,, T2y, T3, ...),via the line width,
- the natural abundancy of each groups of atoms, via the area of the line.
From all these characteristics, we can deduce physical structural properties of the
probe. With more advanced puls sequencies than the single X 5 we will be able to
study more "profound” properties.

1.4. Relaxation Processes and FID attenuation.

Two mechanisms are contributing to the decay of the FID:

- The coming back Yo the thermal equilibrium of the magnetization, of char-
acteristic time Tj

- The loss of coherence between all the spins that contribute to the magneti-
zation, of characteristic time 5

1.4.1. The spin-red relaxation:T,

The magnetization, in the zy plane, out of equilibrium, exchanges energy with the
red (=with the degrees of freedom of translation, rotation, vibration of the molecules
of the crystal) and comes back to thermal equilibrium (M = Mye, ) in a characteristic
time T
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Thmmndynamic&_l relaxation of the magnetization
In a time T1, the interactions of the spins with the external degrees of freedom of the molecule lead
the relaxation of thgaralle/magnetization, that goes back to the equilibrium value



1.4.2. The spin-spin relaxation:T;

In a probe of crystal or liquid crystal, where the relative moves between neighbour
molecules are small, the spins interactuate between them via the dipolar interaction:
the local field, seen by each one of the spins is modificated by the smaller fields created
by the magnetic dipoles that are his neighbours.

Dl

B 0

The local dipolar fields created by its
neighbour modifies the effective field locally
seen by a spin (Bloc).

Hence, each one has a precession-frequency, around e, :

wi = YBigeat = 7(Bo+ B gipolar ) = wo + Aw;
interaction
We can represent the loss of coherence of the magnetization in the rotating frame:
The magnetization loses coherence, because of the dipolar interactions, in a char-
acteristic time T3 (T3 < T}in solids)
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The spin decoherence in the rotating frame : because of local fields created by the neig.ih_!mr_fng
spins, all the spins don 't precess at the same speed around the field By In a charasteristic time
T:coherence is lost and the macroscopic transversal magnetization decays fo 0.



1.4.3. The effect of the inhomogeneities of the static By fleld

The instrumentation does not. allow us to applicate to the probe a perfectly homogene

field. Each area of the probe, even without dipolar interaction, sees a local field:

Biocar = By +B

inomogeneily

The precession frequency of the spins around €. changes around the probe:

“iocal = VYBiocal = Y(Bp + Binomogeneity) = wo + Awipegr
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The static field B, Jor instrumental imperfections,

is inhomogene in the sample. Distint zones |
ghtr;::pfe b;w;:' be ﬂocw with different spin precession frequencies, bﬂ.‘ﬁc of the dm‘eﬂ:;
] see. This leads to a decoherence p&mammmatagmumm‘ decoherence
spin dipolar local fields, o e to the



