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Abstract
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PACS: 03.65.Wj; 03.67.-a; 43.60.-c; 03.65.Sq; 05.45.Mt; 05.45.Gg

The focalization of acoustic waves propagating through complex media was succesfully
achieved by the time reversal mirror (TRM) procedure. In the experiment, the escaping
waves are recorded as they cross the frontier between a region denoted as the cavity and
a free propagating space and then re-emitted to achieve the time reversal. Surprisingly,
this simple prescription allows to recover the initial excitation with high precision and
constitutes an alternative version of the Loschmidt echo. The remarkable robustness of
the technique against inhomogeneities in the system and imperfections in the procedure
enabled several applications in Medical Physics, Oceanography and Telecommunications.

In this thesis, we addressed the TRM procedure in a completely new perspective. This
consists in proposing the time reversed function inside the cavity as the target function
of the injection process. This inverse time scattering approach led to the development
of the perfect inverse filter, a prescription for processing the recorded information that
compensates any feedback and ensures the exact time reversal of the dynamics of acoustic
and quantum waves. We have also developed a novel strategy, based on the wave-particle
duality intrinsic in a linear wave equation, to analyze the dynamical stability of the TRM
against imperfections in the protocol and perturbations in the evolution operator.
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Resumen

Palabras Clave: Espejo de reversión temporal; Caos cuántico; Teoŕıas y aplicaciones
semiclásicas; Eco de Loschmidt; Sincronización, osciladores acoplados; Sistemas de control

PACS: 03.65.Wj; 03.67.-a; 43.60.-c; 03.65.Sq; 05.45.Mt; 05.45.Gg

La focalización de ondas acústicas que se propagan por un medio inhomogéneo fue
lograda con éxito a través del procedimiento conocido como espejo de reversión temporal
(TRM). En este experimento, las ondas salientes son almacenadas al cruzar la frontera en-
tre un region denominada cavidad y el espacio de propagación libre y luego son reemitidas
para lograr la reversión en el tiempo. Sorpresivamente, esta simple prescripción permite
recuperar la excitación inicial con gran precisión y constituye una versión alternativa al
eco de Loschmidt. La notable robustez de esta técnica frente a inhomogeneidades en el
sistema e imperfecciones en el procedimiento ha permitido diversas aplicaciones en áreas
como F́ısica Médica, Oceanograf́ıa y Telecomunicaciones.

En esta tesis, analizamos el procedimiento TRM dentro de una nueva perspectiva.
Ésta consiste en proponer la función temporalmente revertida dentro de la cavidad como
la función objetivo en un proceso de inyección. Este enfoque de dispersión inversa en el
tiempo dio lugar al desarrollo del filtro de inversión perfecta, una prescripción que procesa
la información registrada con el fin de compensar cualquier acción retardada y asegurar
la reversión temporal exacta en la dinámica de ondas acústicas y cuánticas. Además,
desarrollamos una nueva estrategia, basada en la dualidad onda-part́ıcula intŕınseca en
una ecuación de onda lineal, para analizar la estabilidad dinámica del TRM frente a
imperfecciones en el protocolo y perturbaciones en el operador de evolución.
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Chapter 1

On time reversal experiments and
the questions they posed

Is it possible to turn time backwards? From immemorial times, this intriguing question
has inspired the imagination of people, manifesting it through their artistic, philosophical
and scientific expressions. In physics, the concept of time reversal leads to the reversibility
paradox that puts in discussion an apparent conflict between the intrinsically reversible
fundamental mechanical laws and the second law of thermodynamics, which describes the
irreversible behavior of macroscopic systems.

We could say that this story begins in 1872, when Ludwig Boltzmann introduced
his famous H-theorem and demonstrated from first principles how macroscopic systems
composed by an astounding number of particles, e.g. a container with gas, arrive to-
wards a stationary thermal equilibrium. Under the statistical mechanics perspective,
this result states that the system experiences an increase of its entropy, and defines a
concrete arrow of time in the dynamics. Immediately, a good friend of Boltzmann, the
Austrian chemist Josef Loschmidt, objected that such mechanism of irreversibility cannot
be deduced from the low-level time-symmetric equations of motion. Loschmidt proposed
a gedanken experiment where a supernatural being, currently known as the Loschmidt
daemon [Whe94, Kuh87], had the skill to revert simultaneously the velocities of all the
particles and, consequently, the dynamics of the macroscopic gas.

In the seminal paper of Boltzmann, the time asymmetry slips into the theory through
the Stosszahlansatz or molecular chaos hypothesis, where the velocities of two colliding
particles in the gas are assumed to be uncorrelated. With the arrival of the chaos the-
ory about a century later, it was possible to describe dynamics which are exponentially
sensitive to small changes in initial conditions. The chaotic nature of the gas is om-
nipresent since a large amount of particles is involved. Hence, a general justification of
the Boltzmann’s assumption can be developed. Conversely, even slight imperfections in
the Loschmidt daemon would degrade time reversibility. To avoid such imperfections, the
overwhelmed daemon should possess a tremendous precision so that, even in theory, time
reversal represents an impossible task.

The first experimental breakthrough into this problem had to wait until the second part
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Chapter 1. On time reversal experiments and the questions they posed

of the XXth century, when experiments in quantum mechanics gave the first realization
of the Loschmidt daemon. This was the spin echo in nuclear magnetic resonance (NMR)
[Hah50, BHa84]. Erwin Hahn realized that the time reversal could be achieved in systems
of independent spins. In the experiment, spins which are initially aligned in a direction x
in the plane perpendicular to the external field, precess with different Larmor frequencies
Ωi = Ω0 + δΩi due to the local inhomogeneities of the magnetic field, δBzi. As the spins
spread in the plane, the net polarization intensity decreases steadily. At some moment tR,
a Loschmidt daemon acts in the form of a radiofrequency pulse that rotates each spin an
angle of π around an axis y in the plane. As a consequence, each spin begins to “feel” as
if its corresponding magnetic field had changed in sign. Thus, they rotate backwards and
finally return to the original polarization forming an echo that starts spreading again (see
Fig. 1.1a). Hahn noticed that this can be achieved by changing the sign of the Zeeman
Hamiltonian

Hi
Zeeman = −γ (Bz + δBzi)S

z
i = −~ (Ω0 + δΩi)S

z
i −→
t=tR
−Hi

Zeeman

associated to each spin i. The failure to obtain the initial polarization represents a quan-
tifier of the processes beyond the daemon’s control, such as spin-spin and spin-lattice
interactions. Here, it is clear that the spin echo daemon only manages to revert a partial
contribution to the total dynamics: that of the one-body interaction between each spin
and the external field.

It took more than two decades for another experiment by Rhim, Pines and Waugh
[RPW71] to implement the next nontrivial step: the time reversal of interacting spins.
Their magic echo represents a more realistic realization of the Loschmidt proposal. As
much as a gas can be idealized as particles jumping between nodes in a lattice, a quantum
spin system also constitutes a lattice where neighbor spins “up” and “down” exchange
according to their interaction. Based on a strategy similar to that of the spin echo, this
procedure manages to revert the effective dipolar interaction between nearby spins (see
Fig. 1.1b). Since it involves the collective energy, it achieves the time reversal of an
actual many-body dynamics. However, the magic echo still showed a strong irreversibility
which puzzled the community for more than two decades. In a classical model, one
might imagine that the chaos present in many-body gas could play a relevant role, as
it does in the Stosszahlansatz. However, there was no clear pathway for a theoretical
interpretation along this concept in the extreme quantum regime of 1/2 spins. Further
progress only appeared after the essence of the magic echo was distilled in the much simpler
polarization echo technique developed in the group of R. Ernst [ZME92]. By using cross-
polarization, a technique that uses the 13C as a probe [MKB74], it was possible to inject
and extract polarization from a single nuclei in a 1H lattice. This enabled a manner to
locally observe the forward and reverted evolutions of the polarization in the network.
Indeed, the polarization is a quantity that can be described by a norm-conserving wave
packet. In consequence, one might conceive a representation of the complex evolution of
the polarization wave packet |ψ0〉 as a result of a “complicated” (and perhaps chaotic or
non-linear) Schrödinger equation.
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Figure 1.1: Time reversal echoes in NMR. a) Scheme of the Hahn’s spin echo, the initially
focused spins spreads in the rotation plane with different Larmor frequencies. After the
inversion pulse at tR, every spin feels the magnetic field as changed in sign and they
focalize at 2tR. b) Magic echo for four coupled spins. They repel or attract depending
the angle between their orientation and the internuclear vector. After the pulse, all the
interactions change in sign.

The following experimental breakthrough was done at Córdoba in the group of Lev-
stein and Pastawski [PLU95, UPL98, PLU00], by identifying a perturbation independent
regime that gives a natural limit to the efficiency of the many-body Loschmidt daemon
and relates it with the inherent chaos of the many-body dynamics. Here, the reversal in
the dynamics of a many-spin system governed by a Hamiltonian H0 consists of a global
action in the whole system. In a pictorial manner, this can be seen as a hasty daemon,
who performs the instantaneous change in the sign of H0, at the price of doing it im-
perfectly. The resulting errors, such as imperfections in the inversion pulse or ignoring
residual interactions, are summarized as a perturbation term Σ in the effective “back-
wards” Hamiltonian − (H0 + Σ). Additionally, this term may also account for irreversible
dissipative perturbations through a non-Hermitian component Im Σ = −Γ. Hence, if the
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(a)

(b)

(c)

(e)

a) b) c) d)

(τ1+τ2)/µs

e)

t = 0 t = t
R

t = 2t
R

(d)

Pulse

Polarization echo

Figure 1.2: Top: Polarization as a function of time in the polarization echo experiment.
Bottom: scheme of the time reversal operation in a many-body spin system. At the initial
time, the local polarization is injected in the central spin and starts to decay through the
chain. After the inversion pulse at time tR, the dipolar interactions are changed in sign
and the polarization refocuses in the center of the chain at time 2tR. Extracted from to
Ref. [ZME92], c© 1992 The American Physical Society.

reversal takes place at time tR, the expected revival at time 2tR is described through the
return probability

M(2tR) = |〈ψ0| exp [−i (−H0 − Σ) (2tR − tR)/~] exp [−iH0tR/~] |ψ0〉|2 , (1.1)

as a measure of the fidelity of the time reversal process and for which the Córdoba group
coined the name of Loschmidt echo1 (LE). This definition, which also applies to classi-
cal systems, stresses the fact that in a more general context, the dynamical instability in
quantum systems should be manifested as a sensitivity respect to perturbations in the dy-
namics. This contrasts with the classical chaos theory, where the instability is evidenced
by perturbations in initial conditions. Indeed, previous studies using this last defini-
tion had suggested that Quantum Mechanics could not show dynamical chaos [CCG86].

1For a review on the early experiments of the LE see Ref. [PUL01].
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In a seminal paper, Jalabert and Pastawski [JPa01] used a semiclassical description to
show that the Loschmidt echo defined above presents a perturbation independent regime
controlled by the Lyapunov exponent of the corresponding classical system. This semi-
classical approximation describes a wave function evolving from an initial point, as a
superposition of waves riding over the classical trajectories (or rays) connecting the initial
and final points in the alloted time. The instability of the classical trajectories, which is
an intrinsic property of H0, manifests itself when the evolution of the wave function is
perturbed. In this context, chaos plays a limiting role in the reconstruction of the initial
state. Numerical evidence of this regime was observed both in open and closed chaotic sys-
tems [CPW02, WVP02]. Since then, an increasing number of analytical and experimental
work tackled the evaluation of the LE for quite different systems and perturbations.

Simultaneously, and for something more than a decade, another kind of Loschmidt
daemon was being developed in the Laboratoire Ondes et Acoustique in Paris. There, the
group of Mathias Fink designed the time reversal mirror (TRM) [DRF95, Fin99, Fin01],
a procedure that attempted to reverse acoustic waves. This technique was shown to be
quite accurate in the focalization of ultrasound propagating through heterogeneous media.
In its simplest form, the TRM procedure can be summarized as follows (see Fig. 1.3):

• The propagation of a pulse inside certain working region, called the cavity, is de-
tected as it arrives to an array of transducers at the boundaries that surrounds it.
Their registries are recorded until a time tR at which the excitation has already
escaped to the environment and the signal has become negligible.

• Afterwards, each transducer, which can act alternatively as a microphone or loud-
speaker, re-emits in the time reversed sequence producing an extra signal controlled
by the “volume” knob. The experiments show that these waves follow the inverse
dynamics, tending to reconstruct the original pulse at the time t = 2tR.

When comparing standard waveguides with systems with strong scattering, they real-
ized these last ones yield much better focalizations [Fin97]. This counter intuitive result
was obtained in several experiments which evidence that disorder is the responsible for
the robustness of time reversal. In fact, TRM experiments on a closed chaotic cavity
found that even the use of a single transducer and a limited interval of the registration is
enough to perform the time reversal with an acceptable level of quality [DFi97] (see Fig.
1.4). Other realizations have shown to be particularly stable in systems with multiple
scattering mechanisms [TDF01], where the perturbation acts either locally (by remov-
ing scatterers) or globally (by changing the temperature). The stability of the focusing
against the inhomogeneities and the partial use of available information enabled various
applications: in medical physics [FMT03], it seeks to focalize energy to destroy kidney
stones and tumors; in telecommunications [LRT04, HSt04], where the transmitted signal
encodes information not detected anywhere else; and in oceanography [EAH02], where
the attenuation of this signal encodes the fluctuations of the media.

It is clear that TRM experiments introduce an alternative way to obtain time reversal.
Since the procedure involves a “persistent” action performed locally at the periphery of
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Chapter 1. On time reversal experiments and the questions they posed

Figure 1.3: Scheme of the TRM procedure. In the recording step (left), the transducers act
like microphones (white squares) and during the emission (right), they act as loudspeakers
(blue squares). Extracted from Ref. [Fin99], c© 1999 Scientific American, Inc.

the cavity, i.e. a low amplitude injection of wave excitation for a long period of time, we
like to call it the stubborn daemon.

In spite of the impressive success of the TRM procedure, it is legitimate to recognize
that a number of intriguing questions remain unanswered. A first question that we would
like to address is: Why does it work? This is by no means obvious since the theoretical
prescription for time reversal, i.e. one must ensure that the signal and its normal deriva-
tive at every point of the frontier reproduces the exact outcoming signal, does not seem
to be satisfied. Indeed, the experimental procedure only “injects” a signal equivalent to
that detected which sums up to the preexisting excitation. Besides, there is no control
of the normal derivative. Assuming that an exact time reversal could be implemented,
a natural question arises: Does this TRM prescription holds in Quantum Mechanics?
Indeed, Quantum Dynamics follows a first order derivative in time (i.e. it is naturally
dispersive), while the sound equation is second order. Therefore, it is not obvious that the
same procedure would hold for both cases. Finally, considering the different rôle of chaos
in the hasty daemon and its “relative”, the stubborn daemon, one should also venture
into a more fundamental question: Why does the disorder and chaos increase the stability
in this form of time reversal? These are the main questions addressed in this thesis. In
summary, we develop a formal theoretical description of the exact time reversal mirror
and then we analyze its stability against different types of errors.

At the moment we started our work, there was no formal theory regarding the validity
of the TRM protocol as implemented experimentally, even in the ideal case where no errors
occur during the recording and emission steps. In order to obtain such a theory, we first
focus on the concept of perfect reversal in a quantum mechanical system. Intuitively, it is
clear that wave dynamics provides a common starting point in the analysis of both classical
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Reversal

Initial pulse

Focalization

Detection

Injection

Figure 1.4: Scheme of the TRM procedure in a close chaotic cavity. Here, a single
transducer and a portion of the signal are enough to perform the time reversal. Extracted
from Ref. [Fin99], c© 1999 Scientific American, Inc.

and quantum procedures. In practice, such study requires addressing an issue usually
disregarded: the use of the Schrödinger equation (SE) with a time dependent source.
This interest is not merely academic since it appears in many experimental situations.
One that has particular interest for the NMR Córdoba group is the gradual injection of
coherent polarization in a system of abundant nuclei through an NMR cross-polarization
transfer [MKB74]. At the front line of spectroscopical techniques is the creation of a
coherent excited state [WLE93, Zew00] through particular sequences of laser pulses at slow
pumping rates. Finally, even more conventional experiments in AC electrical conductivity
involve electrodes that could be seen as fluctuating sources of waves [Pas92].

In Chapter 2, we address the issue of a local time dependent injection of quantum
waves. Firstly, we solve the inverse scattering problem, i.e. we deduce the local injection
at the periphery of the cavity required to obtain the target function. The key to obtain
this solution was to use the Schrödinger equation in a discrete form as a tight-binding
system. The solution to the injection problem immediately allows us to design a novel
time reversal procedure provided that the original excitation is initially outside the cavity.
As expected, this requires to correct the TRM prescription by incorporating a filter, in
this case a factor in the energy/frequency representation that, taking care of the feedback
effects, ensures the exact time reversal. We will refer to this procedure as perfect inverse
filter (PIF) [PDC07]. This study also quantifies the conditions for a perfect reversal. In
particular, we assume that the signal originates externally and one has access to detect
and record its entrance to the cavity and its further escape. As a possible implementation
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Chapter 1. On time reversal experiments and the questions they posed

of the PIF, we designed the quantum bazooka as an improved version of the acoustic
bazooka proposed by Fink [Kup06]: when a waveguide injects a well defined wave packet
into a resonant or chaotic cavity, it is reflected as a (typically noisy) persistent signal. The
time reversed counterpart allows to store in the cavity the weak signal injected through
a long period of time until it emerges as a burst of high power excitation.

In a second part of the chapter, we address the experimental cases where the original
excitation is initially inside the cavity. This means that one can clearly differenciate
between an excitation period and an escape period. This leads to a PIF correction that
contains an important result not easily visualized in the previous situation: the filter does
not depend on the internal scattering, but only on the group velocities of the various
propagating modes outside the cavity. We test the quality of reversal in both the TRM
and PIF procedures for two different cases. One is a cavity connected to a single channel
waveguide as in a quantum bazooka, where the injection/detection is performed by a
single transducer at the waveguide. The other is a cavity connected to a multichannel
system. Here, the local excitation placed in the cavity is detected by several transducers
as it escapes away.

In Chapter 3, we develop a PIF prescription for classical waves. We start describ-
ing the propagation of acoustic waves in continuous media through its analogy with a
model of coupled harmonic oscillators. In this model, the propagators describe the dis-
placements of the oscillators with respect to their equilibrium positions. The excitations
arise as the response to either the usual impulsive force or a “displacive force”, which
we define as a combination of kicks that change the oscillator position without affecting
its impulse. Each one of these define the Green’s functions describing respectively the
position-momentum and the position-position correlations. The analogy between classi-
cal and quantum propagators allows to derive the corresponding PIF prescription in the
classical domain. As in the quantum case, we observe that the correction imposed by
the PIF prescription also depends only on the group velocity of the outgoing waves. In
classical systems, in particular where the dispersion relation in the outer region is lin-
ear, the TRM becomes exact. As an example of implementation of the PIF procedure,
we consider a Helmholtz resonator coupled to a periodic waveguide where the dispersion
relation is not linear [CDP07, CPa10]. To compute the displacements and velocities of
the coupled oscillators within a fully time reversible algorithm, we develop the Pair Par-
titioning method [CPa07]. This also allows to get rid of finite size effects through a finite
region of oscillators that includes additional “frictional” forces in the Hamiltonian.

Having a formal theory of an ideal TRM, we are able to give a first step to assess
the stability of the procedure. To tackle this question, we address in Chapter 4 the
experiment shown in Fig. 1.4, where the TRM is implemented in a closed chaotic cavity
with a single transducer during a finite emission period [DFi97]. In this chapter, we
introduce the semiclassical approximation for the TRM [CJP08, CPJ09] and use it to
quantify the focalization amplitude. The ergodic hypothesis appears as essential in our
analysis, i.e. that there are infinite ways to reach any point in any given time. Under
this assumption we find, in agreement with the acoustic experiments, that the focusing
amplitude scales linearly with both the number of transducers and the width of the
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emission window. Furthermore, the focusing amplitude results inversely proportional to
the total area (volume) of the cavity.

In Chapter 5 we seek to evaluate how dissipation and errors affect the focalization.
First, we model a dissipative system by considering a small opening in the cavity (a non-
Hermitian perturbation). Here, it is convenient to write the TRM focusing in terms of
the nonescaping probability, i.e. the overlap between forward and backward propagations.
In addition to the usual scaling observed in chapter 4, this leads to a focalization that
decays exponentially with the escape rate Γ given by the opening. In a second part of
the chapter, we analyze the TRM in systems with an Hermitian external perturbation
acting only at the emission stage. Here, the focalization is expressed in terms of the
Loschmidt echo amplitude. In fact, we follow the approximative scheme of the LE studies
and find two decay regimes that depend on the strength of the perturbation: when a small
emission window is used (as compared to the characteristic decay time τ̃), we obtain a
Fermi golden rule (FGR) describing typical experimental cases. In turn, when the final
registration time is larger than τ̃ , the focalization saturates and only depends on the
initial registration time. Among them, the FGR yields an important result concerning
the stability of the TRM: the attenuation in the focalization decreases when the chaos of
the system is increased (the more scattering, the better the focalization is).

Finally, in Chapter 6, we give the global conclusions and discuss some of the possible
future perspectives of time reversal focusing that emerge from our work. Among them,
we want to remark that, by using the new analytical tools we have developed to process
and improve the focalization, new possibilities open ranging from non-invasive tumor
hyperthermal surgery to directed and naturaly encoded telecommunications.
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Chapter 2

Towards the design of a perfect time
reversal mirror

As pointed out previously, the focalization of acoustic, elastic and electromagnetic waves
has been successfully achieved through the time reversal mirror technique (TRM). Al-
though this procedure enabled many experimental realizations with promising applica-
tions, which range from the destruction of kidney stones to high security communication,
a complete theory for the TRM has not been fully developed yet and some puzzling ques-
tions regarding the limitations of the technique remain unanswered. In general, there
is no answer [All69, BEM01] to the inverse time problem: What wave function must be
injected to obtain a desired output? In this chapter we solve this problem for a reasonably
general case and use this solution to implement a protocol for a perfect quantum time
reversal experiment. Such solution was performed through a novel prescription called the
perfect inverse filter (PIF), that reaches the exact time reversal in the dynamics inside a
working region (the cavity), which is surrounded by an array of transducers [CFi92]. The
comparison between both TRM and PIF methods gives a precise idea of how faithfully the
TRM recovers the original state and serves us to identify those cases where such reversal
departs from the ideal one.

Throughout the chapter, we work under the conditions for a perfect reversal: the com-
plete wave amplitude is detected as it crosses the frontiers of the cavity and no absorption
or localization mechanisms are present. These yield a natural separation of the system
in two portions: the cavity, where one attempts to reverse the dynamics; and the outer
region, where the excitations finally escape (see Fig. 2.1). The application of the PIF
strictly depends on where the original excitation is initially placed, being necessary to
consider two different situations:

• The external PIF: when the source that creates the initial excitation is placed out-
side the cavity, the registered signal consist of a well-defined wave packet which
initially travels towards the cavity. Once the wave packet crosses the frontier of
transducers, it spreads by bouncing on the walls or inhomogeneities and a low am-
plitude signal remains emerging towards the outside for a long period. Its reversal
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Chapter 2. Towards the design of a perfect time reversal mirror

could be imagined as an acoustic bazooka device, where the persistent emission of
signal at the level of noise produces an excitation that accumulates in the cavity
and finally escapes towards the outside as a concentrated burst of energy.

• The internal PIF: when the source is placed inside the cavity, the signal is detected
as the excitation decays. This is also the case of a well resolved incoming wave
that enters into the cavity and is detected as escapes towards the outside. In these
situations, the entrance is not detected and we deduce the complete propagation in
terms of the outgoing signal and the response on the transducer.

Exploiting the close correspondence between the Schrödinger and the classical wave
equations, we introduce the PIF within a quantum formalism where the corresponding
propagators are well known. Besides, as we shall see in Chapter 3, the prescription re-
mains valid to describe sound propagation with identical results. Since the corresponding
procedures deal with the general properties of the propagators, the discrete Schrödinger
equation is a well-suited formalism describing, in a comprehensive way, the separation
between the cavity and the outer region, required for the formal solution to the inverse
time problem (i.e. include the signal and its normal derivative at the boundaries of the
cavity). For this purpose, a single transducer is enough to exhibit the physical idea of the
procedure. The formal derivation for several transducers in multi-dimensional systems
follows the same arguments and is presented for both the external and internal cases.

We start with the study of the external PIF prescription and then we evaluate the
obtained results in the quantum version of the acoustic bazooka. In the second part,
we introduce the internal PIF for a single transducer and implement the procedure in a
quantum bazooka configuration. As an example of PIF with several transducers, we solve
the time reversal in a multichannel system with a local excitation placed inside the cavity.
In all these cases we compare the PIF and TRM procedures numerically.

2.1 Solution of the inverse time problem

To start, we resort to the Schrödinger equation in a one-dimensional system describing
the probability amplitude ψ(x) to find a particle in a given position x

[
− ~

2

2m
∇2
x + U(x)

]
ψ(x) = εψ(x). (2.1)

We can discretize this equation obtaining a finite differences approach

− ~
2

2m

ψ(x+ a)− ψ(x)

a
− ψ(x)− ψ(x− a)

a
a

+ U(x)ψ(x) = εψ(x), (2.2)

where a is the lattice constant, i.e. the minimum distance between two possible positions.
We describe this discrete Schrödinger equation through the tight-binding Hamiltonian
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[PMe01]

H =
∑
j∈A∪B

Ej ĉ
+
j ĉj +

∑
j∈A∪B

(Vj+1,j ĉ
+
j+1ĉj + h.c.), (2.3)

where ĉ+
j and ĉj are the standard creation and annihilation operators for a particle at

the coordinate xj = ja. The site index j runs over the whole system, composed by the
cavity A where the control of the wave amplitude is attempted, and the outer region
B, i.e. the complementary infinite subspace of scattering states where the excitations
escape. In the tight-binding model, the kinetic energy gives the first-neighbor hopping
term Vi,j = −V δi±1,j with V = ~2/2ma2, whereas the potential energy U(xj) fixes the
“site energy” Ej = U(xj) + 2V . Therefore, the probability amplitude at site xj, denoted
as ψj(ε), is obtained through the equations

(ε− Ej)ψj(ε)− Vj,j−1ψj−1(ε)− Vj,j+1ψj+1(ε) = 0, (2.4)

and the Schrödinger equation takes the matrix form

(εI−H) |ψ(ε)〉 = 0, (2.5)



. . .

ε− Ej−1 −Vj−1,j 0
−Vj,j−1 ε− Ej −Vj,j+1

0 −Vj+1,j ε− Ej+1

. . .







...
ψj−1(ε)
ψj(ε)
ψj+1(ε)

...




=




...
0
0
0
...



. (2.6)

We consider an initial wave packet whose components ψn(0) are located in the outer
region B and travels towards the cavity A. As the wave packet crosses the frontier
delimited by the transducers, the detected signal in the s-transducer takes the usual
expression

ψs(t) =
∑
n∈B

i~GR
s,n(t)ψn(0), t ≥ 0. (2.7)

Here, the time retarded propagator

i~GR(t) = exp

(
− i

~
Ht
)
, t ≥ 0, (2.8)

corresponds to the unitary time evolution operator where its (s, n) element is the temporal
response at the s-site due to a Dirac delta excitation δ(t) originated in the n-site and
satisfies

i~
∂

∂t
GR
s,n(t)−

∑
i∈A∪B

Hs,iG
R
i,n(t) = δs,nδ(t), (2.9)

with δs,n the Kronecker delta. We emphasize the term retarded propagator since the
involved response is a consequence of δ(t), contrary to the advanced one that is defined
for times t < 0 before such instantaneous excitation. For a more compact notation, we
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Chapter 2. Towards the design of a perfect time reversal mirror

omit the R superscript of such retarded propagators since the advanced ones will be not
used henceforth. Its Fourier transform gives the representation in the energy domain that
is usually known as the Green’s function

G(ε) = (εI−H)−1 . (2.10)

In this representation,

ψs(t) =

∫ ∞
−∞

ψs(ε)e
−iεt/~ dε

2π~
, (2.11)

= i~
∑
n∈B

∫ ∞
−∞

Gs,n(ε)ψn(0)e−iεt/~ dε

2π~
. (2.12)

At this point, we separate the space in the portions A and B, regarding that the A
sub-space is the region where one intends to control the wave function. Formally, the
total Hamiltonian can be written as

H = HA +HB + VAB = H0 + VAB, (2.13)

where the hopping matrix VAB links the transducers with the edge sites of A. For sim-
plicity, we consider a semi-infinite system where the two regions are separated by a single
transducer (see Fig. 2.1).

Infinite barrier

x
s

s-site

CavityOuter region

123… 0

Figure 2.1: Top: potential profile for a scattering barrier located inside the cavity delim-
ited by the transducer at xs. Bottom: tight-binding model for the considered system.

By labeling the internal sites as m with m < s ≤ n, and n ∈ B, it is possible to relate
the internal and external sites by considering VAB perturbatively. In this sense,

G(ε) = (εI−H0 − VAB)−1 , (2.14)

=
(
I−G(0)(ε)VAB

)−1G(0)(ε), (2.15)

14



2.1. Solution of the inverse time problem

where G(0)(ε) = (εI−H0)−1 is the unperturbed Green’s function matrix that solves
Eq. (2.10) for VAB = 0. Expanding the first term of Eq. (2.15) as a geometric series,
one obtains

G(ε) = G(0)(ε) +G(0)(ε)VABG(0)(ε) +G(0)(ε)VABG(0)(ε)VABG(0)(ε) + . . . , (2.16)

that can be represented recursively as the Dyson equation [Eco06]

G(ε) = G(0)(ε) +G(0)(ε)VABG(ε), (2.17)

and whose (m,n) element writes

Gm,n(ε) = G(0)
m,n(ε) +

∑

l,l′
G

(0)
m,l(ε)Vl,l′Gl′,n(ε). (2.18)

Since the separation between both spaces is given through the transducer at the s-site,
the unperturbed Green’s functions G

(0)
j,i (ε) defined by Vs−1,s = Vs,s−1 = 0 are exact zeros.

Hence, Eq. (2.18) writes

Gm,n(ε) = G
(0)
m,s−1(ε)Vs−1,sGs,n(ε). (2.19)

Furthermore, the Dyson equation remains valid if we take the Green’s function between
the m-site and the transducer yielding

Gm,s(ε) = G
(0)
m,s−1(ε)Vs−1,sGs,s(ε), (2.20)

and the wave function for sites m ≤ s writes

ψm(t) = i~
∑
n∈B

∫ ∞
−∞

Gm,s(ε)
Gs,n(ε)

Gs,s(ε)
ψn(0)e−iεt/~ dε

2π~
, (2.21)

= i~
∫ ∞
−∞

Gm,s(ε)
1

i~Gs,s(ε)
×
∑
n∈B

[i~Gs,n(ε)ψn(0)] e−iεt/~ dε

2π~
. (2.22)

The sum within square brackets can be identified from Eq. (2.12) as the energy represen-
tation of the detected signal in the transducer, i.e.

ψm(t) = i~
∫ ∞
−∞

Gm,s(ε)
ψs(ε)

i~Gs,s(ε)
e−iεt/~ dε

2π~
. (2.23)

This is the wave function inside the cavity that results from

χs(ε) =
1

i~Gs,s(ε)
ψs(ε), (2.24)

i.e. the Fourier transform of the signal that must be injected at each instant in order to
obtain the target function provided that no amplitude existed in A at the initial time.
This result only relies on the partition in complementary subspaces connected by a single
Hermitian operator VAB. The key feature allowing this simple solution was the represen-
tation of the Schrödinger equation in a discrete basis. This enabled a natural separation
into complementary subspaces that were re-connected through the Dyson equation.
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Chapter 2. Towards the design of a perfect time reversal mirror

2.2 Exact reversal through the Perfect Inverse Filter

Now that we know how to control the dynamics inside the cavity, an injection achieving
the temporal reversion is possible. Here, we accounts the inverse propagation of the
detected signal, which is obtained as ψrev

s (t) = ψ∗s(2tR − t), for times tR ≤ t ≤ 2tR. In
addition to the inversion of the temporal argument t −→ 2tR − t, the complex conjugate
operation represents the inversion in the momentum at the site of the transducer and
is required for the time reversal. In this case, the energy representation of the reversed
signal is performed as

ψrev
s (ε) =

∫ ∞
−∞

ψ∗s(2tR − t)eiεt/~dt '
∫ 2tR

tR

ψ∗s(2tR − t)eiεt/~dt (2.25)

= eiε2tR/~
[∫ tR

0

ψs(t)e
iεt/~dt

]∗
= eiε2tR/~ψ∗s(ε), (2.26)

where the additional phase eiε2tR/~ accounts for the displacement in time of the signal.
For this target function, the PIF prescription results

χPIF
s (ε) =

eiε2tR/~

i~Gs,s(ε)
ψ∗s(ε). (2.27)

This is the injection that performs the exact time reversal in the dynamics inside the
cavity, provided that there is no exctitations neither at the begining nor at the end of the
detection. Besides, the filter can be seen as that one applies on the TRM injection

χTRM
s (ε) = eiε2tR/~2V

~
ψ∗s(ε), (2.28)

and consists of the inverse of the Green’s function at the site of the transducer. This
compensates the feedback produced by the internal scattering of both the cavity and the
outer region.

2.2.1 Multi-dimensional external PIF

Here we include the generalization for the external PIF in multi-dimensional systems with
several transducers. As before, the system is separated in two sub-spaces: the cavity A
with NA sites ai and the outer region B, being this last an infinite space of sites bi. The
initial wave packet that starts in the outer region can be expanded in terms of the real
basis states as

|ψB(0)〉 =

NB∑
n=1

〈bn |ψB(0)〉 |bn〉 =

NB∑
n=1

ψbn(0) |bn〉 , (2.29)
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2.2. Exact reversal through the Perfect Inverse Filter

with NB →∞. The arriving excitation is detected at the array of NS transducers located
in the positions si according to

|ψS(t)〉 =




ψs1(t)
ψs2(t)

...
ψsNS

(t)


 = i~GS,B(t) |ψB(0)〉 , (2.30)

where GS,B(t) is the NS × NB matrix of propagators that link the outer sites with the
array of transducers and whose elements write [GS,B(t)]i,j = Gsi,bj(t). Hence, the time
reversal of the detected signal is

|ψrev
S (t)〉 = −i~G∗S,B(2tR − t) |ψ∗B(0)〉 , tR ≤ t ≤ 2tR. (2.31)

In the energy representation, the Green’s functions matrix maintains the same recur-
sive properties as before and the Dyson equation connecting internal and external sites
is

GA,B(ε) = G(0)
A,B(ε) +G(0)

A,Ã
(ε)VÃ,SGS,B(ε), (2.32)

where the hopping matrix VÃ,S links the transducers with the boundaries Ã ⊂ A of the

cavity. Again, G(0)(ε) accounts for the unperturbed Green’s functions with VÃ,S = 0 and
is exactly a zero matrix. We skip the ε dependence symbol for a more compact notation
henceforth. Using of the Dyson equation to evaluate the response between the transducers
and the cavity one obtains

GA,S = G(0)

A,Ã
VÃ,SGS,S, (2.33)

and therefore
GA,B = GA,SG−1

S,SGS,B. (2.34)

Then, the signal in the cavity that follows from the emission at the transducers can be
deduced according to Eqs. (2.21) and (2.22)

|ψA〉 = GA,SG−1
S,S |ψS〉 , (2.35)

and for the time reversed injection we use Eq. (2.26) to obtain

|ψrev
A 〉 = eiε2tR/~GA,SG−1

S,S |ψ∗S〉 , (2.36)

with |ψ∗S〉i = ψ∗si(ε). Then, PIF injection for several transducers generalizes as

∣∣χPIF
S

〉
=
eiε2tR/~

i~
G−1
S,S |ψ∗S〉 , (2.37)

maintaining its original form according to Eq. (2.27). The N2
S elements of GS,S(t) describe

the response at the si-transducer to a Dirac delta pulse emitted in the sj-transducer.
According to the related experiments on the acoustic TRM, this operation is considered
as noninvasive since all these values are measured at the cavity frontiers.
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Chapter 2. Towards the design of a perfect time reversal mirror

2.2.2 Time reversal via injection: the Quantum Bazooka

In the following example, we use the previous result in a gedanken scheme that achieves
a perfect time reversal of an arbitrary wave packet by assuming that a persistent non-
invasive injection and detection of waves at a single point is possible. We illustrate this
by considering an incoming Gaussian wave packet in a semi-infinite space bounded by an
infinite barrier at x = 0 which, together with a scattering barrier, define a reverberant
region (see Fig. 2.1). At the point s, located to the left of the barrier, we alternate the
use of an injector and detector of wave function (probability and phase). This set-up is a
simplified variation of the acoustic bazooka devised by Fink and collaborators. However,
instead of using the TRM, we proceed as follows:

t = t
R

0,0

0,5

1,0

x [a]

0,0

0,5

1,0
0,0

0,5

1,0
0,0

0,5

1,0

0,0

0,5

1,0

0

Barrier

x
s

0,0

0,5

1,0

x [a]

P
ro

b
ab

il
it

y
 d

en
si

ty
 |ψ
n
(t

)/
ψ

0
|2

0,0

0,5

1,0
0,0

0,5

1,0
0,0

0,5

1,0
0,0

0,5

1,0

0

Barrier

x
s

Figure 2.2: Rescaled probability density |ψn(t)/ψ0|2 (in the cavity and the outer region)
for different times. The left panel shows the forward evolution between 0 and t1 < tR.
The backward evolution is shown in the right panel between 2tR − t1 and 2tR. The blue
dotted line is the result of a PIF injection, while the solid red (superimposed) is obtained
by injecting only the time-reversed wave recorded at xs during the forward evolution. The
initial Gaussian wave packet, which is centered at xs−100a, has σ/a = 10 and k0a = π/2.

1. By injecting a Dirac delta pulse in the transducer and detecting the resulting prop-
agation in the same place, we obtain the response Gs,s(t) of the system to an in-
stantaneous excitation at the transducer and compute its Fourier transform Gs,s(ε).
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2.2. Exact reversal through the Perfect Inverse Filter

2. We start with an empty cavity (ψm(0) = 0, ∀m ∈ A) and a wave packet in B
that travels towards it (e.g. a Gaussian centered at xc). The probability density
at time zero is shown in the top of the left panel of Fig. 2.2. It is followed by
a sequence of snapshots of the density at selected times in the range (0, t1) (with
t1 < tR) increasing from top to bottom and continuing in the right panel in the
range (2tR − t1, 2tR) from bottom to top. The transducer is indicated by a vertical
dotted line in each panel.

3. During the period 0 ≤ t ≤ tR, the wave packet amplitude and phase are registered
while performing a free evolution: it enters to the cavity, collides with the barrier
and then bounces back in the wall at the right end of the system. This diffuse wave
finally escapes towards the outer region at the left side (see left panel of Fig. 2.2).
Provided that there are no localized states in the cavity and that the wave packet
does not return, the condition ψs(t > tR) ' 0 can be faithfully fulfilled.

4. Now our target function is the wave packet with reversed evolution ψrev
s (t) =

ψ∗s(2tR − t) with tR ≤ t ≤ 2tR. Using the information registered in the previ-
ous step, we apply a Fourier transform and normalize it according to Eq. (2.27) as
shown in Fig. 2.3. Transforming back to time we get the actual time dependent in-
jection acting for a period tR. The injection also produces a wave packet that travels
to the left, i.e. escaping to the outer region. Hence, the perfect time reversion is
restricted only to the cavity.

5. Once the injection has ceased, the original wave packet is recovered at time 2tR
with an inverted momentum: this can be seen as the Loschmidt echo. Figure 2.2
also shows, in red solid line, the echo resulting from TRM procedure. It requires
only the recording of the outgoing wave described in step 3 which is time reversed
and reinjected without further processing.

Notably, the PIF and TRM recovered signals are remarkably similar1, their shape in
(tR, 2tR) is the same and coincides with the exact case. This indicates the high accuracy of
the TRM in this condition where the relevant energies of the wave packet occupy a narrow
region of the spectrum and the incoming and outgoing components of the excitation are
well resolved.

On the other hand, differences between both procedures appear when the incoming and
outgoing signals superpose. In such cases the PIF procedure filters the outgoing portion.
A system in this regime is illustrated in Fig. 2.4 where we represent the probability density
at the injection site. In the upper left panel we display the forward evolution as registered
at the transducer. Here, one can roughly identify three time regimes: entrance (incoming)
and escape (outgoing), separated by a (mixed) region where both components interfere.
The lower left panel displays the time reversal procedure. The TRM would inject only
the portion of the outgoing waves as registered in the upper panel. In contrast, the PIF

1In fact, both curves superpose when the TRM is multiplied by a factor 2V/~.
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Figure 2.3: Top panel: Fourier transform of the registered wave amplitude at xs. Real
(red) and imaginary (blue) components are shown. Bottom panel: the same function is
filtered through the PIF prescrition obtaining the injection function χPIF

s (ε) (the phase
that points the origin of time is omitted here).

procedure yields an injection that extends to the mixed region shown as a dark cyan dash-
dotted line. The PIF intensity (blue dashed line) constitutes a substantial improvement
over the TRM signal (red dotted line). According to the right panel, an exact coincidence
between the original density and that obtained from the PIF procedure is found for all
the points inside the cavity indicating a perfect time reversal.

For the considered situation, the TRM focusing can be improved by choosing a more
natural separation between the incoming and outgoing components of the wave packet.
Whenever provided by the experiment, the isolated incoming wave packet can be obtained
from the dynamics of the corresponding homogeneous system where the scattering and
the infinite barriers have been removed. In this case, the outgoing wave is built from the
subtraction of both signals and is re-emitted to the original system in the inverse temporal
sequence.

In Fig. 2.5, we show the previous signal that contains the three components described
above. The separated components according to the homogeneous evolution are depicted in
red dotted (incoming) and blue dashed (outgoing) respectively. Although it is not a perfect
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Figure 2.4: a) Probability density at xs in the forward evolution of the wave packet. b)
At right, the density injected at xs by the PIF procedure (dark cyan dash-dotted line).
Its evolution determines the reversed density (blue dashed), superposed with the exact
one (black solid line). The density obtained from TRM (close to the focalization time) is
depicted in red dotted line. c) Spatial focalization of the wave packet at t = 2tR. The PIF
(blue dashed) recovering superposes with the target wave (black solid). The height of the
barrier is 0.2V and the width 5a. The Gaussian wave packet has σ = 3a and k0a = 0.3π.

time reversal of the initial excitation2, the contrast in the focalization (see inset) shows
an improvement over the previous approximate separation since there is no remaining
excitations in the cavity. Furthermore, it is interesting to note that this outgoing wave
can be conceived as the one that is originated inside the cavity. In such case, as we shall
see in the following section, an exact reversion would require the correction given by the
PIF for the internal source case.

2.3 Internal Perfect Inverse Filter

We now consider the situation in which, at the initial time, the excitation is concentrated
inside the cavity. From t0 = 0 until a registration time tR, the discrete wave function

ψs(t) =
∑
n∈A

i~GR
s,n(t)ψn(0), 0 ≤ t ≤ tR, (2.38)

2Differences with the exact case are particularly due to the narrowness of the initial excitation.
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Figure 2.5: Filtering of the registered signal (black solid) between the incoming (red
dotted) and the outgoing (blue dashed) components according to the corresponding ho-
mogeneous case. Inset: comparison of the rescaled spatial focalizations for the TRM (blue
dashed) and the exact one (black solid).

is detected and recorded as it escapes through the frontier. The cavity A, either integrable
or chaotic, is opened by a waveguide consisting of a 1d channel. Therefore, its frontier is
controlled by a single transducer at xs = sa, with s integer and a the distance between
neighbor sites in the waveguide. Assuming that there are no localized states, the registra-
tion time tR is taken long enough in order to ensure that all excitations leave the cavity.
Although apparently a restriction, this simple model faithfully represents the essential
underlying physics. A straightforward generalization in multi-dimensional systems would
require the same idea exposed here and is developed in the following section.

As we have already shown in Sec. 2.1, the time reversion for a wave packet arriving
at the cavity from the outer region is performed, in the energy domain, through the
prescription

χPIF
s (ε) =

1

i~GR
s,s(ε)

ψrev
s (ε). (2.39)

Here, the key is to notice that in the above expression, the Fourier transform of the
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2.3. Internal Perfect Inverse Filter

reversed signal contains the integration for all times

ψrev
s (ε) ≡

∫ ∞
−∞

ψrev
s (t)eiεt/~dt, (2.40)

accounting for the time reversed complete evolution, i.e. both the incoming and outgoing
components are required in order to compute ψrev

s (ε). Since we want to reverse the signal
that is produced inside the cavity, we should deal with the building up of the complete
evolution from the knowledge of ψs(t) at times 0 ≤ t ≤ tR. As a first step, we assume
that the injection function is known and the reversed propagation at the transducer is

ψrev
s (t) = ψ∗s(2tR − t), (2.41)

= i~
∫ t

0

GR
s,s(t− t′)χPIF

s (t′)dt′, (2.42)

for times tR ≤ t ≤ 2tR during the emission period. As a consequence of this PIF injection,
the back propagation achieves an exact reversion inside the cavity and therefore the
evolution at subsequent times (t > 2tR) can be interpreted as a wave packet that starts
at the focalization time with ψn(2tR) = ψ∗n(0), regardless of the remanent non-returning
waves outside the cavity. Thus, for subsequent times we expect for the reversed signal

ψrev
s (t) =

∑
n∈A

i~GR
s,n(t− 2tR)ψ∗n(0). (2.43)

A comparison between Eqs. (2.38) and (2.43) shows us that for the most simple case in
which all coefficients ψn(0) are real, both evolutions become identical. The same but
with opposite sign should be obtained if they were purely imaginary. In a more general
situation where these coefficients present relative phases between them we should analyze
the Fourier transform

ψrev
s (ε) =

∫ 2tR

tR

ψ∗s(2tR − t)eiεt/~dt+ i~
∑
n∈A

∫ ∞
2tR

GR
s,n(t− 2tR)ψ∗n(0)eiεt/~dt (2.44)

= eiε2tR/~

[
ψ∗s(ε) + i~

∑
n∈A

Gs,n(ε)ψ∗n(0)

]
, (2.45)

where the second term within the brackets can be interpreted as the unknown evolution
for subsequent times. At this point, we account for the hopping terms Vs,s−1 and Vs−1,s

(with xs−1 inside de cavity) connecting the cavity with the outer region. Hence, we use
the Dyson equation to rewrite

Gs,n(ε) = G(0)
s,n(ε) +Gs,s(ε)Vs,s−1G

(0)
s−1,n(ε). (2.46)

As compared to Eq. (2.18), notice that the inversion in the order of terms corresponds to
the fact that we are refering to the internal sites n. Since the subsystem defined by the
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Chapter 2. Towards the design of a perfect time reversal mirror

cavity is closed and non absorbing, Vs,s−1G
(0)
s−1,n(ε) is a real number and

G∗s,n(ε) = G∗s,s(ε)
[
Vs,s−1G

(0)
s−1,n(ε)

]∗
(2.47)

=
G∗s,s(ε)

Gs,s(ε)
Gs,n(ε). (2.48)

Therefore, from this last property we obtain the unknown evolution as a correction in
phase of the detected signal according to

i~
∑
n∈A

Gs,n(ε)ψ∗n(0) = −Gs,s(ε)

G∗s,s(ε)
ψ∗s(ε), (2.49)

which allows to rewrite the complete time reversed wave function that crosses the trans-
ducer (Eq. (2.45)) in terms of the partial detection

ψrev
s (ε) = eiε2tR/~

[
1− Gs,s(ε)

G∗s,s(ε)

]
ψ∗s(ε). (2.50)

Now that we have the complete ψrev
s (ε), the injection function according to the PIF

formula is given by

χPIF
s (ε) =

1

i~Gs,s(ε)
ψrev
s (ε) (2.51)

=
2

~
eiε2tR/~ Im G−1

s,s(ε) ψ
∗
s(ε). (2.52)

This constitutes the PIF prescription for the case where the initial state is an excitation
inside the cavity. As we shall see, the imaginary component of the inverse in Gs,s(ε) is
closely related to the group velocity of the scattered waves in the outer region. Therefore,
contrary to the external source condition, the correction imposed by the PIF under the
internal source case does not depend on the detailed structure of the cavity.

An alternative and more compact formulation for the internal PIF may be obtained
based on the fundamental optical theorem [PFM02]. In words, it states that the con-
tinuous density of states at a given site x0 is built upon the escape rates through the
boundaries of the system. If we choose a semi-infinite chain and there is no escape to the
left of site x0, the excitation can only escape to the right of the frontier xs with a rate3

Γs(ε)/~. In equations:
ImG0,0(ε) = G0,s(ε)Γs(ε)G

∗
s,0(ε). (2.53)

Multiplying both sides by a pulse i~ξ(ε) we find

i~
[
G0,0(ε)−G∗0,0(ε)

]
ξ(ε) = 2iG0,s(ε)Γs(ε)(−i~)G∗s,0(ε)ξ(ε). (2.54)

3The close connection between Γs(ε) and the Green’s function will be deduced explicitly in the fol-
lowing examples.

24



2.3. Internal Perfect Inverse Filter

Since the outgoing wave originated at the focal point x0 writes

ψ0(ε) = i~G0,0(ε)ξ(ε), (2.55)

we reobtain the PIF prescription by identifying the second term in the left hand of
Eq. (2.54) as the backward evolution in the focal point. Hence, the complete evolution,
identical to the reversed one, results

ψ0(ε) + ψ∗0(ε) = ψrev
0 (ε) (2.56)

= i~G0,s(ε)

[
2

~
Γs(ε)ψ

∗
s(ε)

]
. (2.57)

The term between the square brackets is the excitation that should be injected at xs to
reproduce the reversed original signal in the cavity and coincides with the PIF prescription
obtained in Eq. (2.52), provided that Γs(ε) = ImG−1

s,s(ε) and 2tR is redefined as the origin
of time.

2.3.1 Multi-dimensional internal PIF

In the internal case, we deal with the construction of the subsequent times propagation
as shown in Eq. (2.45). In this multi-transducer case, it takes the form

|ψrev
S 〉 = eiε2tR/~ [|ψ∗S〉+ i~GS,A |ψ∗A〉] , (2.58)

noticing that the second term within the brackets is the “unknown” evolution. The sub-
spaces separation is done through the hopping matrices VS,Ã and VÃ,S connecting the

cavity with the outer region. Here, Ã is the subset of sites in the cavity that link to the
array of transducers just outside. Hence, it is possible to rewrite GS,A in terms of the
Dyson equation

GS,A = G(0)
S,A +GS,SVS,ÃG

(0)

Ã,A
. (2.59)

For the considered Green’s functions we have G(0)
S,A = G(0)

S,A = 0 and since the subsystem

A is closed and non absorbing, G(0)

A,Ã
VÃ,S is a real matrix. Therefore, we obtain for the

complex conjugate Green’s function

G∗S,A = G∗S,SVS,ÃG
(0)

Ã,A
= G∗S,SG−1

S,SGS,A, (2.60)

where the complex conjugate operation (∗) should not be confused with the adjoint (†).
For the backward propagation we found

i~GS,A |ψ∗A(0)〉 = i~GS,S

[
G∗S,S

]−1G∗S,A |ψ∗A(0)〉 = −GS,S

[
G−1
S,S

]∗ |ψ∗S〉 , (2.61)

where the relation [
G∗S,S

]−1
=
[
G−1
S,S

]∗
, (2.62)
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Chapter 2. Towards the design of a perfect time reversal mirror

is readily deduced from

GS,SG−1
S,S = I = I∗ = G∗S,S

[
G−1
S,S

]∗
. (2.63)

Finally, we use this last expression and rewrite Eq. (2.58) as

|ψrev
S 〉 = eiε2tR/~

[
I−GS,S

[
G−1
S,S

]∗] |ψ∗S〉 . (2.64)

Now that we have the complete |ψrev
S 〉, the injection function according to the PIF formula

is given by ∣∣χPIF
S

〉
=

1

i~
G−1
S,S |ψrev

S 〉 =
2

~
eiε2tR/~Im G−1

S,S |ψ∗S〉 , (2.65)

in complete consistency with the (scalar) single transducer version of Eq. (2.52).

2.3.2 Application examples

PIF in a quantum bazooka configuration

In order to evaluate the Eq. (2.52) we propose a model for a quantum bazooka device
composed by a stadium billiard coupled with a one-dimensional waveguide as shown in
Fig. 2.6. The discretization in the Schrödinger equation gives the tight-binding structure
of the Hamiltonian

H = HA +HAB +
∑
j∈B

(
Ej ĉ

+
j ĉj + Vj,j+1ĉ

+
j+1ĉj + h.c.

)
, (2.66)

where HA is the Hamiltonian of the billiard in a discrete basis and HAB the coupling with
the waveguide B.

Transducer

Initial excitation

x
s

r0
Cavity Outer region

Figure 2.6: Basic scheme of a quantum bazooka device with a localized excitation inside.
In the tight-binding model, the waveguide coupled to the billiard is represented by a
one-dimensional semi-infinite chain.

Supposing a single semi-infinite waveguide, the cavity results delimited by a single
transducer at site xs. The Green’s function is obtained through the decimation technique
(see Appendix A) as

Gs,s(ε) =
1

ε− Es − Σin(ε)− Σout(ε)
, (2.67)
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2.3. Internal Perfect Inverse Filter

where Σin(ε) and Σout(ε) are the corrections to the self energy due to the presence of the
sites inside and outside the cavity respectively [PMe01]. Note here that the contribution
to the self energy due to the presence of the billiard is included in the Σin(ε) term.

Decimation on the cavity gives the Σin(ε) contribution as a continued fraction com-
posed by the internal hoppings and site energies. In absence of magnetic fields or dissi-
pation those parameters are all real numbers. Therefore,

Σin(ε) =
Vs,s−1Vs−1,s

ε− Es−1 − Vs−1,s−2Vs−2,s−1

ε− Es−2 − · · · V1,0V0,1

ε−E0−...

, (2.68)

is also a real function, regardless the details of HA.
On the other hand, in the limit where the number of sites increases indefinitely, the

homogeneous outer region, a linear chain with site energies Eo and hoppings V , contributes
to the self energy as a complex function [PMe01]:

Σout(ε) = ∆(ε)− iΓ(ε), (2.69)

with

∆(ε) =





ε−Eo

2
+
√(

ε−Eo

2

)2 − V 2 ε− Eo < −2 |V |
ε−Eo

2
|ε− Eo| ≤ 2 |V |

ε−Eo

2
−
√(

ε−Eo

2

)2 − V 2 ε− Eo > 2 |V |
, (2.70)

and

Γ(ε) =

{ √
V 2 − ( ε−Eo

2

)2 |ε− Eo| ≤ 2 |V |
0 |ε− Eo| > 2 |V |

. (2.71)

In homogeneous systems where all the energies and hoppings are the same, the set of
equations given by Eq. (2.4)

(ε− Eo)ψj(ε)− V (ψj−1(ε) + ψj+1(ε)) = 0, (2.72)

can be solved by the plane wave ψj(εk) = ψke
−ikja that gives.

(εk − Eo)ψke
−ikja + V ψke

−ikja
(
eika + e−ika

)
= 0, (2.73)

and defines the dispersion relation for the asymptotic waves

εk = Eo − 2V cos(ka). (2.74)

Then, the relationship between Γ(ε) and the group velocity can be found as follows

vg(εk) =
1

~
dεk
dk

=
2V a

~
sin(ka) = vmax sin(ka) (2.75)

= vmax

√
1−

(
εk − Eo

2V

)2

=
2a

~
Γ(εk). (2.76)
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We choose Eo = 2V so that the differential form of the Schrödinger equation for a particle
with mass m is obtained as the limit ~2/2V a2 −→ m when V → ∞ and a2 → 0. Since
only the imaginary component from Σout(ε) is required, Eq. (2.52) writes

χPIF
s (ε) =

2

~
eiε2tR/~Γ(ε)ψ∗s(ε). (2.77)

The complex exponential serves to define the origin of time, and hence we can neglect it.
Using the above definition of Γ(ε) we get

χPIF
s (ε) =

√
1−

(
ε− 2V

2V

)2
2V
~ ψ

∗
s(ε) (2.78)

=
vg(ε)

vmax

χTRM
s (ε). (2.79)

The exact reversal requires the injection of a TRM signal filtered by the group velocity
of the scattered waves. When the initial state is a local excitation composed by a few
sites inside the cavity, the Fourier transform of the detected signal ψs(ε) will cover the
whole energy band. The factor in the PIF procedure shows that in dispersive media the
correction is effective near the band edges where the group velocity becomes negligible.

In the numerical solution, the propagation of an initial Gaussian wave packet with
energy (k2

0 +σ−2)a2V is recorded by a single transducer placed in the waveguide consisting
of a single propagating mode (in practice, this waveguide is well represented by a one-
dimensional chain). The time evolution was performed through a second order Trotter-
Suzuki algorithm [Rae96]. Fig. 2.7 shows the recovered signal at the focal point, i.e.
the center of the original wave packet. The focalization functions for both methods are
close to the exact reversed propagation. However, a slight broadening of the focalized
wave packet is observed in the TRM. In this case, the differences between PIF and TRM
procedures are small because the initial excitation is mainly composed by states whose
group velocity in the outgoing channel remains almost constant.

As mentioned before, when the initial state is a local excitation composed by a few
sites inside the cavity, the Fourier transform of the detected signal ψs(ε) will cover the
whole energy band between −2V and 2V and structural differences between both methods
should appear.

Multichannel PIF

A more general case where the multi-dimensional version of Eq. (2.52) can be tested is
the multichannel system schematically pictured in Fig. 2.8.

The idea is to generalize our previous result for frontiers fully delimited by an array
of transducers according to Eq. (2.65). Here, a two dimensional cavity is surrounded by
NL transducers at the left and NR at right. The total Hamiltonian is written as

H =




HL VL,C 0
VC,L HC VC,R

0 VR,C HR


 , (2.80)
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Figure 2.7: Focalization at the focal point for TRM (red dotted) and PIF (blue dashed)
procedures contrasted with the exact reversal (black solid). PIF and TRM curves coincide
with the exact one for times close to 2tR. Left inset: spatial contrast in the recovered
signal at t = 2tR.

where HC is the block tridiagonal Hamiltonian describing the cavity and HL (HR) is the
Hamiltonian on the left (right) side. VL,C and VC,R are real matrices containing the
hopping terms between the boundaries and the cavity. The unitary transform

U =



U
L

0 0
0 IC 0
0 0 UR


 , (2.81)

with IC the identity matrix in the cavity, separates the outer region into NL + NR inde-
pendent channels consisting of one-dimensional homogeneous chains4. The corresponding
energy Eα

k of the k-channel, with α being L or R, follows the dispersion relation given by
Eq. (2.74) for a finite number of sites, i.e.

Eα
k = Eo − 2V cos

(
kπ

Nα + 1

)
, (2.82)

4With homogeneous we mean that all the hoppings and site energies are the same.
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Figure 2.8: Scheme of the multichannel system.

where k = 1, . . . , Nα and

[Uα]nk = uαnk = uαkn =

√
2

Nα + 1
sin

(
nkπ

Nα + 1

)
, (2.83)

is the n-site component of the k-channel.
By performing a decimation process in each one of these channels, the correction to

the self energy is obtained from the diagonalization of each side Hamiltonian Hα

H̃k,k ≡
[
U†HU

]
k,k

=Eα
k − Σ(ε− Eα

k ), (2.84)

whenever the k-index runs over the boundaries of the cavity. Then, the Green’s function
in the reduced basis of the array of transducers can be expressed as

Gα,β ≡
[
(εI−H)−1]

α,β
, (2.85)

and therefore we have

Im G−1
α,β = Im (εI−H)α,β (2.86)

= −
[
U ImH̃ U†

]
α,β

. (2.87)

The unitary transformation U is a diagonal block matrix without mixing terms between
L and R sides of the cavity yielding, as indicated in Eq. (2.84),

Im
[
G−1
S,S

]
(n,m)∈α =

Nα∑

k=1

uαnkΓ(ε− Eα
k )uαkm, (2.88)

where (n,m) ∈ α means that both n and m transducers are taken in the same side of the
system. Thus, the injection function is obtained by replacing Eq. (2.88) in Eq. (2.65) as,

∣∣χPIF
S,α

〉
n

=
2

~
eiε2tR/~

Nα∑

k,m=1

uαnkΓ(ε− Eα
k )uαkm

∣∣ψ∗S,α
〉
m
. (2.89)
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As we have shown previously, the PIF correction for the internal source case is given
by the group velocity at the boundaries. Notice here that the Γ(ε) factors are centered
on the self energies Eα

k whose width is given by the hoppings in the outer region.
A numerical evolution was performed in the time domain through a second order

Trotter-Suzuki method [Rae96]. In the considered example, we have NL = 3 transducers
to the left and NR = 2 to the right and the propagation is favored through the vertical
hoppings5. Depending on this particular choice of the parameters, the PIF correction
presents relevant differences with the TRM counterpart.
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Figure 2.9: Representative elements of the PIF correcion: numerical in thick black points
and analytical in thin blue line. Real and imaginary components of ψs(ε) are shown for
comparison.

The time-dependent response functions GR
s′,s(t) between the transducers at the bound-

aries are then computed and a numerical Fourier transform is performed in order to obtain
the 5×5 matrix GS,S. The analytical and numerical evaluations of Eq. (2.88) are depicted
in Fig. 2.9 for representative elements of Im G−1

S,S, suggesting how the group velocities are
mixed. Figures 2.9a, b and c show the diagonal elements and the Fourier transform of

5According to Fig. 2.8, the vertical hoppings were set as twice of the horizontal ones.
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the detected signals for transducers 1,2 and 4 respectively. For the transducers 2 and 4,
the correction becomes effective in the central region of the spectrum where the detected
signals are still appreciable. In agreement with Eq. (2.88), Fig. 2.9e shows that no mixing
exists between transducers belonging to different sides of the cavity. We can observe a
little portion of points from the numerical results that does not fit with the analytical
curves. These appear because of the finite registration time.
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Figure 2.10: Recovering of the initial condition in the focal site x0. The ideal reversed
evolution is in black solid line and the both procedures, TRM (red dotted) and PIF (blue
dashed), are contrasted.

Now that we have the corrected injection, we reverse the dynamics and compare it
with the TRM case. Although the TRM achieves a reasonable quality in the spatial
focalization, differences appear both for the time evolution at the focal site (see Fig. 2.10)
and the spatial distribution (contrast) of the recovered signal at the focalization time, as
shown in Fig. 2.11. On the other hand, notice that in the continuum limit where the self
energies are close together and the band width becomes wider, the PIF correction reduces
to a constant pre-factor, justifying the efficiency of the TRM.
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Figure 2.11: Normalized spatial distribution for the recovered initial excitation in the
cavity. The location of the transducers is indicated by rectangles.

2.4 Comparison with other results

In addition to the TRM, Fink and collaborators proposed the spatiotemporal inverse filter
(STIF) for acoustic waves as a focusing method that optimizes spatial contrast [TTF00].
It requires the inversion of the Fourier transform of the direct wave field propagator, i.e.
the matrix built from the temporal response at the transducers to a Dirac delta function
in each control point within the focal region. Unlike the TRM, the STIF injection acts as
a highly invasive technique because it is necessary to measure the full propagator whereas
the former only need to compute the row related to the focal point. Recently, an alter-
native proposal by Vignon et al. [VRA07], denoted minimally invasive STIF (miSTIF),
achieved the same focusing quality than STIF. The idea behind this procedure is that all
the information in the wave field propagator can be deduced from the backscattering sig-
nals of the transducer array at the boundaries and the technique results no more invasive
than TRM. In this context, miSTIF and PIF result similar because they correct the TRM
injection function using the propagator matrix in the reduced basis of the transducers.
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Chapter 2. Towards the design of a perfect time reversal mirror

It is interesting to show some similarities between PIF and the mentioned focusing
procedures. We will consider a simple example with a single transducer at xs and a
focusing point located in x0. The goal of STIF is to inject some signal at xs that, at
a later time, is able to form a spatiotemporal delta function in x0. The strategy is to
compute the inverse of the propagator Gs,0(ε). Thus, the injection proposed could be
interpreted as that which achieves the time reversal of an hypothetical pulse emitted by
a source at x0, i.e. sn(t) = δn,0δ(t), resulting

χSTIF
s (ε) = G−1

s,0(ε)
s0(ε)

2V
(2.90)

=
[
G∗s,0(ε)G0,s(ε)

]−1
G∗s,0(ε)

s0(ε)

2V
. (2.91)

Since the time reversal mirror injection is given by

χTRM
s (ε) =

2V

~
ψ∗s(ε), (2.92)

and
ψ∗s(ε) = −i~G∗s,0(ε)s0(ε), (2.93)

we can rewrite the STIF as a filter

χSTIF
s (ε) =

1

(2V )2

[
G∗s,0(ε)G0,s(ε)

]−1
χTRM
s (ε). (2.94)

Notice that this filter requires the determination of the non-local Green’s function con-
necting the transducer and the focal point. Therefore, the miSTIF was developed as a
procedure that replaces it in terms of the local Green’s function at the transducer site.
Such replacement is enabled by the optical theorem

ImGs,s(ε) = Gs,0(ε)ImΣ−0 G
∗
0,s(ε) +Gs,s(ε)ImΣ+

s G
∗
s,s(ε), (2.95)

applied to an infinite chain where xs > x0. Here, Σ−0 (Σ+
s ) is the self energy correction

that accounts for the free propagation at the left (right) of the focal point (transducer)
whose imaginary part is Γ−0 (Γ+

s ). Since

ImGs,s(ε) ≡ Gs,s(ε)Im[Σ+
s + Σ−s ]G∗s,s(ε), (2.96)

we may use that, in a homogeneous system, the escape at both sides has the same group
velocities

Im[Σ+
s + Σ−s ] = −2Γs. (2.97)

In consequence, under this restricted condition, the optical theorem leads to

G∗s,0(ε)G0,s(ε) = − 1

2Γ0

ImGs,s(ε), (2.98)
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2.5. Summary

from which the miSTIF prescription can be obtained as a broad-band approximation to
Eq. (2.94) in which Γ0(ε) = Γs(ε) ∼ V , and finally

χmiSTIF
s (ε) =

1

2V
[−ImGs,s(ε)]

−1 χTRM
s (ε), (2.99)

i.e. the minimally invasive spatiotemporal inverse filter consists of the inverse of the
imaginary component of the Green’s function at the site of the transducer. In a multi-
transducer system, this miSTIF corrects the TRM in the reduced basis of the transducers.

A comparison between miSTIF and PIF shows that both coincide when the self-energy
correction to the left and right sides of the chain are the same and

Gs,s(ε) =
1

ε− 2∆(ε) + i2Γ(ε)
(2.100a)

= − i

2Γ(ε)
, |ε− Eo| < 2V (2.100b)

and hence, in that particular case

1

ImGs,s(ε)
= Im

−1

Gs,s(ε)
, (2.101)

and both injection prescriptions, PIF and miSTIF, become proportional.
In turn, since PIF is an exact procedure, it allows to test the efficiency of miSTIF in

focusing the excitation to achieve a spatiotemporal delta function. This actually results
as the back-propagation of the original pulse excitation. As such, in our one dimensional
homogenous case, the amplitude at the focal point is not a delta function in the time
domain but J0(2V t/~), a Bessel function of first kind. In the acoustic case, where the
wave function normalization is not required, this may be conceived as an approximant to
the delta function as V →∞.

2.5 Summary

In summary, we solved the Schrödinger equation with source boundary conditions and we
obtained a general solution for the inverse time problem expressed in terms of the Green’s
function at the frontier of the cavity. This was achieved by the perfect inverse filter, a
novel prescription that allows for the exact time reversal in the wave dynamics.

When one starts with a cavity empty of excitation, the resulting prescription filters the
play-back of the signal (i.e. the TRM prescription) with the inverse of the Green’s function
that accounts for the feedback of the system. We tested both TRM and PIF prescriptions
in the quantum bazooka device, where a good focalization quality was obtained. This is
because the involved energies of the initial wave packet6 were centered around a region

6The choice of the central energy of the wave packet was necessary in order to avoid a total reflection
in the potential barrier of the cavity.
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Chapter 2. Towards the design of a perfect time reversal mirror

where the correction is almost constant. Furthermore, we found strong differences in the
time reversal reconstruction of the initial excitation between the PIF and TRM in the case
where the incoming an outgoing components of the wave packet are mixed. This situation
would be an interesting implementation of the PIF in systems where the transducers are
close to the inhomogeneities or in cases where one intends to separate the incoming and
outgoing components of the wave.

On the other hand, we deduced the PIF prescription in the case where one starts with
an excitation inside the cavity, either generated inside or arriving from a previous process.
In this case, the PIF yields a much simpler prescription and contains an important result:
the filter that corrects the TRM does not depend on the internal scattering, but only on
the group velocities of the various propagating modes outside. Hence, this simple filter
applies to two physically relevant situations:

1. When the excitation is actually originated in the interior of the cavity. In this case,
one obtains a perfect reversal of the wave function for all the times after the source
has been turned-off.

2. When one uses an external source in a situation that allows a clear separation
between incoming and outgoing waves, one can use the recording of the outgoing
wave to perfectly reverse the whole excursion of the excitation through the cavity.
This condition is achieved when the boundaries are placed far enough from the
reverberant region, as typically in the quantum and acoustic bazooka devices.

The obtained time reversed signal given by the TRM and PIF in a quantum bazooka
has shown a small improvement of the PIF over the TRM in cases where the initial excita-
tion is composed by states whose group velocity in the outgoing channel remains almost
constant. However, we found in a multichannel system that such correction becomes
effective when the initial local excitation involves the whole band of energies.

In general, the PIF correction constitutes a notable improvement over the TRM pre-
scription in cases where the energy dependence has a non-linear dispersion relation, as
described by the Schrödinger equation, when the escape velocity presents non trivial struc-
tures due to the presence of many simultaneously propagating channels or when collisions
outside the cavity have a relevant contribution.
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Chapter 3

Focusing of classical waves

In the previous chapter, we introduced the PIF procedure that achieves the exact time
reversal in a working region of the system denoted as the cavity. The prescription was
obtained by considering the propagation of quantum waves that results from the solution
to the Schrödinger equation with a source in the boundaries of the cavity. Depending on
the initial location of the wave packet, we found two main results:

1. When the original excitation comes from the outer region, the detected signal should
be filtered through the inverse of the Green’s function that accounts for the system
feedback in the location of the transducer.

2. If the original wave packet is initially placed inside the cavity or the excitation
results from a well resolved incoming wave (and we detect only the outgoing signal),
the PIF filter no longer depends on the internal scattering and only consists of the
group velocity of the propagating waves that cross towards the outer region.

The idea here is to extend the above description in classical systems taking advantage
of the close correspondence between the Schrödinger and the classical wave equations. As
before, our motivation comes from the fact that the PIF ensures the exact reversal and
it can be used to assess the limitations of the TRM.

We will work in the discrete version of the classical wave equation since the detailed
structure of the involved propagators is easily obtainable both analytically and numeri-
cally. Such situation can be faithfully reproduced by a chain of coupled harmonic oscil-
lators. In particular, we will show that the detection and injection of either the positions
or velocities of the oscillators at the frontiers of the cavity is enough to achieve the time
reversal.

To begin, we introduce the harmonic chain as a discrete model of the classical wave
equation and define the propagators resulting from the response to two kinds of forces:
the impulsive force and the displacive force. Having established the analogy between
both classical and quantum Green’s functions, we deduce the internal PIF by following
the same scheme of Chapter 2 and implement the prescription in a single-mode Helmholtz
resonator, i.e. a heavy oscillating mass coupled to a one-dimensional waveguide formed by
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Chapter 3. Focusing of classical waves

a periodic arrangement of lighter oscillators. The generalization to a multi-dimensional
system is implemented in a two-dimensional lattice where the propagating transversal
modes are detected by an array of transducers.

In order to compute the dynamics of the system and to reproduce the PIF and TRM
procedures numerically, we develop in Sec. 3.3 a numerical algorithm denoted as the Pair
Partitioning method. As in the Trotter-Suzuki for quantum systems, it separates the
Hamiltonian in pairs of coupled oscillators and applies the corresponding time evolution
as a stroboscopic sequence. As we shall see, this method results perfectly reversible
and the decay due to the escape in the outer region can be easily reproduced by using
additional “friction” terms in the Hamiltonian. Through this method, we compare the
time reversed focalizations obtained from the TRM and PIF procedures in the above
mentioned examples.

3.1 Modeling the classical wave equation

In classical systems, the propagation of acoustic waves through a one-dimensional waveg-
uide is usually described by the linear wave equation

∂2

∂t2
u(x, t) = c2∇2

xu(x, t), (3.1)

where c is the speed of the wave and the scalar function u(x, t) refers to the propagation
of the wave. In its discrete version, this equation can be visualized as a chain of coupled
harmonic oscillators where the coordinate x is replaced by the fixed points xj = ja.
Here, the j index indicates the equilibrium positions of the oscillators and a is the typical
distance between them. The scalar function u(x, t)→ uj(t) accounts for the displacement
on the j-oscillator with respect to its equilibrium position and the Laplacian can be
approximated as the following finite difference

∇2
xu(x, t)→ 1

a2
[uj+1(t) + uj−1(t)− 2uj(t)] . (3.2)

The Fourier transform on the displacement gives its representation in the frequency do-
main as

uj(t) =

∫ ∞
−∞

uj(ω)e−iωtdω

2π
, (3.3)

and therefore the Eq. (3.1) writes as the set

(
ω2 − 2ω2

x

)
uj(ω) + ω2

x [uj+1(ω) + uj−1(ω)] = 0, (3.4)

where ωx = c/a represents the coupling between neighboring oscillators and, within the
invoqued analogy between the oscillators and the tight-binding, it might be called ex-
change frequency. Notice that this frequency renormalizes the natural frequency of each
oscillator with the value 2ω2

x, that indicate the potential energy due to interaction when
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3.1. Modeling the classical wave equation

the neighbors are at equilibrium. In consequence, this can be interpreted as a mean-field
or Hartree correction of the many-body problem.

In the present homogeneous case, the dispersion relation of the involved normal modes
is obtained through the planar waves uj(ω) = uk exp(−ikja), yielding the usual solution
for the acoustic modes

ωk = ±2ωx sin

(
ka

2

)
. (3.5)

As in the previous tight-binding model, this band structure is an inherent property of the
discretization in the coordinate and it will play, again, an important rôle in the quality
of the TRM. The group velocity for the free propagating waves is readily obtained as

vg(ωk) =
dωk
dk

= c cos

(
ka

2

)
, (3.6)

vg(ω) = c

√
1−

(
ω

2ωx

)2

, (3.7)

and it tells us that the propagation beyond the limits of the band ±2ωx is forbidden.
In the continuum limit where a → 0, the band width tends to infinity and the relevant
frequencies are kept within the range ω ¿ 2ωx. Thus, the usual speed vg = c is recovered.

Additionally, we can generalize the above model by including different terms in Eq. (3.4).
In the diagonal part, we account for the natural frequencies ωi that are independent of
the couplings between the masses. The exchange frequencies that appear as off-diagonal
contributions may also vary depending on the masses and elastic constants of the oscilla-
tors. Hence, as pictured in Fig. 3.1, each oscillator with mass mi and natural frequency
ωi moves in the vertical direction and is coupled to its nearest neighbors through springs
whose elastic constants are Ki−1,i at the left, and Ki,i+1 at the right. Since we seek for the
exact correspondence with the longitudinal propagation of Eq. (3.1), the natural lenght
of those springs are assumed to be zero. Beyond a constant term in the Hamiltonian,
this restriction in the direction of movement yields a dynamics which is completely anal-
ogous to the propagation of Eq. (3.4), i.e. the longitudinal oscillations taking place in a
one-dimensional waveguide.

The constant terms resulting from the equilibrium positions do not contribute in the
dynamics and hence they can be neglected. Then, we describe the vertical displacements
ui(t) through the classical Hamiltonian

H =
∑
i

(
p2
i

2mi

+
miω

2
i

2
u2
i

)
+
∑
i

Ki,i+1

2
(ui+1 − ui)2 . (3.8)

The resulting equations of motion yield

u̇i(t) =
∂H

∂pi
=

pi
mi

= vi(t), (3.9)

v̇i(t) = −∂H
∂ui

= −ω̃2
i ui(t) +

Ki,i+1

mi

ui+1(t) +
Ki−1,i

mi

ui−1(t), (3.10)
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Figure 3.1: Scheme of the considered model: a one-dimensional chain of coupled oscilla-
tors. Every mass mj with natural frequency ωj is coupled to its first-neighbors through
the springs Kj−1,j to the left and Kj,j+1.to the right respectively.

where

ω̃2
i = ω2

i +
Ki,i+1

mi

+
Ki−1,i

mi

, (3.11)

is the effective frequency that is obtained from the “static” correction due to the presence
of the neighbors oscillators. The above equations are schematically depicted in Fig. 3.2. In
agreement with this last, the displacements and velocities are connected through arrows
pointing the origin of the time derivative. As we can see, there is no arrows connecting,
in a direct way, two positions or velocities respectively. In the context of the time reversal
procedures, the injection of the target signal through the modification of the oscillator’s
velocity will only affect to its corresponding position. This means that the recording and
injection of either the displacement or velocity at the transducers is enough to perform
the exact reversal.
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Figure 3.2: Schematics of the equations of motion for a one-dimensional chain of coupled
oscillators.
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3.1. Modeling the classical wave equation

In the frequency domain, these equations adopt the matrix form

D−1(ω)u(ω) =




. . .

ω2 − ω̃2
i−1

Ki−1,i

mi−1
0

Ki−1,i

mi
ω2 − ω̃2

i
Ki,i+1

mi

0
Ki,i+1

mi+1
ω2 − ω̃2

i+1

. . .







...
ui−1(ω)
ui(ω)
ui+1(ω)

...




= 0, (3.12)

where D(ω) = (ω2I−M)
−1

is the resolvent matrix described in the real basis and is
associated to the dynamical matrixM. Its element Dj,i(t) denotes the position-momentum
response that gives the j-th oscillator’s displacement due to an instantaneous impulse in
the i-th oscillator.

Thus, the resolvent provides the solutions to Eq. (3.12) as the propagation that results
from a general force Fi(t). Such propagation comes from the convolution in time between
the applied force and the resulting response as

uj(t) =
∑
i

∫ t

0

Dj,i(t− τ)
1

mi

Fi(τ)dτ, (3.13)

where Fi(t) = fi(t) + gi(t) is applied at the i-th mass and accounts for two kinds of
forces: the impulsive force and the displacive force. The impulsive force sets the initial
momentum according to

fi(t) = mi∆u̇i(0)δ(t), (3.14)

and it may conceived as an instantaneous “kick” at the i-th oscillator. The displacive
force is able to produce an instantaneous shift ∆uj(0) in the position without changing its
momentum. This would require that the first impulsive kick be followed by a compensating
one according to

gi(t) = mi∆ui(0) lim
∆t→0

1

∆t

[
δ
(
t+ 1

2
∆t
)− δ (t− 1

2
∆t
)]
. (3.15)

If this instantaneous shift is applied at some time τ in-between of the interval (0, t), the
frequency dependence would read

gi(ω) = iωmi∆ui(τ)eiωτ , (3.16)

and therefore, the corresponding time-dependent displacement is

uj(t) =
∑
i

∫
Dj,i(ω)iω∆ui(τ)e−iω(t−τ) dω

2π
(3.17)

=
∑
i

Gj,i(t− τ)∆ui(τ), t ≥ τ, (3.18)
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Chapter 3. Focusing of classical waves

defining the position-position response, also known as the Green’s function, which is
related to the resolvent as

Gj,i(ω) = iωDj,i(ω). (3.19)

On the other hand, we will use linearity to write the observed displacement in terms
of δui(t), defined as the forced position shift accumulated in the unit time according to

uj(t) =
∑
i

∫
Gj,i(t− τ)δui(τ)dτ. (3.20)

This quantity represents the injection function that one should correct in order to ob-
tain the target wave excitation. We will use this function in the following section when
describing the derivation of the classical prescription for exact time reversal.

3.2 Classical PIF

We are now ready to establish the PIF procedure for a classical wave equation. We will
profit of the Green’s function strategy developed in the previous chapter. In order to
focus in a situation with a traditional interest for acoustics, we will consider a Helmholtz
resonator coupled to an acoustic waveguide. We will model this situation as an inhomo-
geneity in the system of coupled oscillators [Rub63, CPa06]. Here, the lowest frequency ω0

of the λ/2 mode in the resonator is represented by a single mass m0 and its corresponding
spring. The waveguide is modelled by a semi-infinite chain of identical masses m = αm0

placed at the equilibrium points xn = na and the nearest neighbor spring constant is
K = mω2

x. This system can be faithfully represented as in Fig.3.3a, where we consider
the longitudinal movement of the resonator and the masses of the waveguide. According
to Eq. (3.12), the equations of motion for the corresponding displacements un are com-
pletely analogous to the vertical propagation considered before. These can be written in
a matrix form which, in the frequency domain, reads:

D−1(ω)u(ω) =




ω2 − ω̃2
0 αω2

x · · ·
ω2

x ω2 − 2ω2
x

...
. . .







u0(ω)
u1(ω)

...


 = 0, (3.21)

where ω̃2
0 = ω2

0+αω2
x. Here, the diagonal elements of the resolvent have a simple expression

in terms of continued fractions (see Appendix A). In particular, the response function for
a single transducer placed at the site xs on the waveguide is

Ds,s(ω) =
1

ω2 − 2ω2
x −∆in(ω)− [∆out(ω)− iωη(ω)]

. (3.22)

Here, the mean-field frequency 2ω2
x appears shifted by the dynamical effect ∆(ω) from

the oscillators at both sides of xs. The imaginary frequency shift indicates that different
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3.2. Classical PIF

components of excitation would eventually escape through the waveguide at the right with
the different group velocities

vg(ω) = aη(ω) = aωx

√
1−

(
ω

2ωx

)2

, (3.23)

in agreement with Eq. (3.7). The propagation of an excitation originated in the resonator
at x0 is detected at the transducer in the waveguide at xs. The recorded signal presents
a strong component in ω̃0, which is the “carrier” frequency as could be appreciated from
the density of states at the resonator’s site. The displacement at the transducer, resulting
from an initial displacive force in the resonator, can be expressed as

us(t) = Gs,0(t)∆u0, t ≥ 0. (3.24)

We seek the injection function δus(t) that produces the exact reversion of the original
wave within the control region. According to the external prescription discussed in Sec. 2.1
of the previous chapter, the perfect time reversal is possible whenever the dynamics starts
and ends up without any excitation inside the cavity. Even when our system starts with an
excited cavity, the lack of momentum ensures that the forward and backward evolutions1

are symmetric respect to the focalization time. Once the decay signal is registered at
the transducer for positive times, the subsequent propagation that takes place after the
focalization is also known and we build the function to be corrected as

urev
s (t) =

{
us(2tR − t), tR ≤ t ≤ 2tR
us(t− 2tR), t > 2tR

. (3.25)

Thus, the injection that produces the desired reversion can be obtained from Eq. (3.20)
as

δuPIF
s (ω) =

urev
s (ω)

Gs,s(ω)
. (3.26)

Although such filter could be implemented through the direct construction of the
complete evolution, we proceed as in the internal PIF (see Sec. 2.3) in order to test the
relation with the group velocity. Thus, according to Eq. (2.45), the complete evolution
writes in the frequency domain as

urev
s (ω) = eiω2tR [u∗s(ω) + us(ω)] (3.27)

= eiω2tR
[
G∗s,0(ω) +Gs,0(ω)

]
∆u0. (3.28)

Here again, the key tool is the use of a Dyson equation connecting the two subspaces
delimited by the transducer. It allows us to relate the backward propagation given by
Gs,0(ω) in terms of the detected wave that carries the conjugate G∗s,0(ω)

Gs,0(ω) =
Gs,s(ω)

G∗s,s(ω)
G∗s,0(ω), (3.29)

1As in the direct time evolution, the forward propagation corresponds to the detected signal and the
backward one consists on the remaining excitation after the focalization.
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and the PIF injection rewrites

δuPIF
s (ω) = eiω2tR

[
1

Gs,s(ω)
+

1

G∗s,s(ω)

]
u∗s(ω) (3.30)

=
eiω2tR

iω

[
1

Ds,s(ω)
− 1

D∗s,s(ω)

]
u∗s(ω) (3.31)

= eiω2tRη(ω)u∗s(ω). (3.32)

As in the quantum case, we denote by 2ωxu
∗
s(ω) as the Fourier transform δuTRM

s (ω)
of the injection function in the TRM protocol. In consequence, the perfect time reversal
is obtained only once a further filter vg(ω)/vmax is applied. Hence, the PIF formula for
internal source in the acoustic case is

δuPIF
s (ω) =

vg(ω)

vmax

δuTRM
s (ω), (3.33)

with vmax = aωx the group velocity in the center of the band and the focalization time is
redefined as the origin of time.

This equation defines the perfect inverse filter for a classical wave, where the injection
prescribed by the TRM procedure appears now corrected by the group velocity. Notably,
the prescription remains exactly the same as that of the quantum version. This implies
that the effectiveness of the filter will depend on the structure of the waveguide and the
initial wave packet, regardless the details of the cavity. Notice that for cases in which the
group velocity in the free space is constant2, it results δuPIF

s (ω) = δuTRM
s (ω).

The reconstruction of the initial excitation was numerically performed using the Pair
Partitioning method, which yields the complete dynamics by alternating among the evo-
lutions of pairs of coupled masses. We shall describe in detail the derivation of the method
in Sec. 3.3. Since the recording time tR is longer than the typical decay in the whole cavity,
we can assume that all the masses in the control region have recovered their equilibrium
positions once we start with the emission stage.

As we show in Fig. 3.3, the time reversal recovering is best depicted by analyzing the
local energy

E0(t) =
p2

0(t)

2m0

+
m0ω̃

2
0

2
u2

0(t), (3.34)

which avoids the fast fluctuations present in the displacement and momentum amplitudes.
Here, the left panel shows (in a logarithmic scale) the recovering of the local energy in
the resonator. As we can observe, the PIF coincides with the exact reversal over all
the relevant times. Since in this model the waveguide has a cut-off frequency, as would
be the case in a periodic waveguide, the PIF filter improves the TRM focusing when it
comes to reproduce low intensity signals. This is particularly evident in the time reversed
survival collapse: a sudden dip in the local energy resulting from the interference between
the excitation surviving in the resonator and that returning from the waveguide. This

2That would be the case of a homogeneous waveguide where vg = c.
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Figure 3.3: a) Harmonic model for a Helmholtz resonator coupled to a waveguide. b)
Local energy recovered as function of time. Both methods, the TRM (red dotted) and
PIF (blue dashed) are contrasted with the exact reversal (black solid). PIF and exact
curves coincide for the whole period. c) Displacement distribution at the focalization
time.

surprising phenomenon was originally described in the context of quantum spin channels
[RFP06]. The perfect contrast of the time reversed signal provided by PIF is evidenced
in the right panel by the exact cancellation of displacements except for the resonator. It
is also interesting to notice that both procedures produce a phantom signal outside the
“silence region”. While the TRM has an evident imperfection in the localization of the
signal, the PIF procedure yields this absolute cancellation even outside the cavity region
defined by the far field transducer at xs. The resulting localization, which corresponds to
λ/2 of the carrier signal, was only enabled by filtering out the band edge components in
the emitted signal. From this perspective, the PIF procedure constitutes a contribution
to the goal of achieving the focusing energy beyond the diffraction limit [LRT07].

3.2.1 PIF in a two-dimensional membrane

The extension of the PIF procedure in multi-dimensional systems with a set of transducers
constitutes a straightforward derivation of that described in the quantum case. We will
work on the internal case where the initial excitation is already inside the cavity. For
such purpose, one can write the detected displacements in the array of transducers as
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Chapter 3. Focusing of classical waves

that given by the general force

FA(t) = mT I
[
∆uA(0)

d

dt
δ(t) + ∆u̇A(0)δ(t)

]
, (3.35)

and hence, it may be expressed in terms of the resolvent operator

uS(t) = DS,A(t) [iω∆uA(0) + ∆u̇A(0)] , t ≥ 0, (3.36)

where, as always, S denotes the set of transducers at the equilibrium positions si and
A refers to the cavity region. As we expect to reproduce the perfect reversal, the time
evolution for the subsequent times would include the inversion of the velocities at the fo-
calization time. Therefore, following the same arguments as before, the reversed evolution
in the emission period tR ≤ t ≤ 2tR reads

urev
S (t) =

∫ t

0

dt′GS,S(t− t′)δuPIF
S (t′) = uS(2tR − t), (3.37)

and the corresponding backward propagation that raise at the subsequent times t > 2tR
is the evolution that follows the focalized excitation as

urev
S (t) =

∫ 2tR

0

dt′GS,S(t− t′)δuPIF
S (t′) (3.38)

= DS,A(t− 2tR) [iω∆uA(0)−∆u̇A(0)] , (3.39)

where the negative sign in ∆u̇A(0) comes from the fact that the time reversal operation
inverts the momenta of all the oscillators inside the cavity. In the frequency domain, the
complete evolution resulting from the Fourier transform of the above evolutions yields

urev
S (ω) = eiω2tR

[
DS,A(ω)− D∗S,A(ω)

]
[iω∆uA(0)−∆u̇A(0)] , (3.40)

where
[
D∗S,A(ω)

]
i,j

= D∗si,aj(ω) is the complex conjugate without the transpose operation.

Therefore, we use the Dyson recurrence by separating the space through a “perturbative”
coupling between the outer region and the cavity. Again, if we assume that there is no
damping processes that would include additional complex terms in the resolvent of the
reduced basis A, the resolvent corresponding to the backward evolution can be replaced
by

DS,A(ω) = DS,S(ω)
[
D−1
S,S(ω)

]∗D∗S,A(ω), (3.41)

and hence we obtain for the injection function

δuPIF
S (ω) =

eiω2tR

iω
D−1
S,S(ω)urev

S (ω) =
2eiω2tR

ω
ImD−1

S,S(ω)u∗S(ω). (3.42)

As we briefly mentioned before, it is interesting to note that only the detection and
emission of either the displacement or velocity in the array of transducers is required.
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3.2. Classical PIF

Depending on what is the detected function and what is the emitted one, the above filter
will change in a factor iω according to the following equations

δuPIF
S (ω) = 2eiω2tR

ω
ImD−1

S,S(ω)u∗S(ω), (3.43)

δuPIF
S (ω) = 2eiω2tR

iω2 ImD−1
S,S(ω)v∗S(ω), (3.44)

δvPIF
S (ω) = −i2eiω2tRImD−1

S,S(ω)u∗S(ω), (3.45)

δvPIF
S (ω) = −2eiω2tR

ω
ImD−1

S,S(ω)v∗S(ω). (3.46)

The group velocities in the frontiers of the cavity play a significant role in the determina-
tion of the target function that enables for the exact reversal. If the outer region admits
a decomposition in multi-channel waveguides, this dependence is easily obtained as in the
quantum case, and the structure on the filter may imply an effective correction on the
TRM procedure.

In the following numerical example we consider the PIF and TRM procedures in a
two-dimensional lattice where the oscillations are allowed in the z direction as shown in
the scheme of Fig. 3.4. The registration and emission is dealt by an array of NS = 4
transducers pointed in the dotted rectangle of the scheme. Inside the cavity, an initial
excitation (displacement and velocity) is set in the impurity with m0 = 4m and ω0 = ωx.
The corrective terms in Eq. (3.42) are obtained from the construction of the Green’s
function matrix in the time domain. For the j-th column in GS,S(t) we register in all the
transducers the resulting propagation that arrives from the initial displacement on the
j transducer and so on. Thus, the inversion of the Green’s function is performed in the
frequency domain where

1

ω
ImD−1

S,S(ω) = ReG−1
S,S(ω). (3.47)

Some illustrative elements of such inverse in Fig. 3.4 are presented and contrasted with
their analytical expressions obtained from the same analysis given in Eq. (2.88). Here,
the multi-channel decomposition writes

Re
[
G−1
S,S

]
n,m

=

NS∑

k=1

unkη(ω2 − ω̃2
k)ukm, (3.48)

with

ω̃2
k = 2ω2

x + 4ω2
x sin2

(
kπ/2

NS + 1

)
, (3.49)

the effective characteristic frequencies of the normal modes whose components are

unk = ukn =

√
2

NS + 1
sin

(
nkπ

NS + 1

)
. (3.50)

In the considered example, we found a gap in the correction terms between −ωx and
ωx due to the dimensionality of the lattice. In consequence, the filtered signal will not
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Figure 3.4: Top: scheme of the 2D harmonic lattice, the cavity, delimited by four trans-
ducers at the right, contains an impurity mass in the (2, 2) site. Bottom: comparison
between numerical (black solid) and analytical (blue dotted, superimposed) results on the
PIF corrective terms.

contain these central energies as compared with the corresponding TRM injection. On
the other hand, there is a mismatch between the numerical and analytical results near the
center of the band ω ' 0 due to the finite registration period. Since for long times the
decay of the escaping waves follows a power law, it is hard to fully satisfy the condition
uS(tR) = 0 in the direct calculus of the time evolution propagators and hence it appears
as a localized component in the normal modes expansion.

The time reversed evolution (displacement and velocity) is computed for both proce-
dures in the impurity mass and is shown in Fig. 3.5 for times close to the focalization
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Figure 3.5: Recovering of the initial excitation. Top: spatial contrast in the focalized dis-
placements (left) and velocities (right) for the TRM (red circles) and PIF (black squares)
procedures. Bottom: time recovering of the displacement (left panel) and velocity (right)
in the excited oscillator for the TRM (red dotted) and PIF (blue dashed). In black solid
line we show the exact reversal for comparison.

(see bottom panels). Furthermore, the spatial contrast of the displacements and velocities
inside the cavity is also computed in the top panels of the figure. As we can appreciate,
the PIF coincides with the exact time reversed evolution and recovers the initial excita-
tion. For the TRM, we observe strong differences with the ideal case in both the time
and space reconstructions. The time reversed displacement and velocity maintain almost
the same phase but present different oscillation amplitudes and, at the focalization time,
all the oscillators are shifted from their equilibrium positions.

3.3 The Pair Partitioning method

The dynamical properties that concerns a discrete classical wave system can be obtained
either through the diagonalization of the involved Hamiltonian or through the direct cal-
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Chapter 3. Focusing of classical waves

culation of the general propagator presented in Eq. (3.12). In this last case, one should
compute the involved continued fractions in the frequency domain and then perform the
corresponding inverse Fourier transform that yields the time dependence of the displace-
ments and velocities of the oscillators. However, our focus here is to describe the time
reversal operation as in the experimental procedures, i.e. we would like to obtain the
wave amplitude as the signal that arrives to the transducer, and evaluate the Green’s
function as an emission and detection procedure. Because of this, we develop a numerical
method, called the Pair Partitioning (PP), that enables a complete description of the dy-
namics within the time domain [CPa07]. Provided that the numerical integrator is stable
and perfectly reversible, it represents a key issue in the evaluation the robustness of the
reversal procedures. Additionally, we introduce a numerical recipe that approximates the
solution of an infinite system through a finite one. For this last, a non-homogeneous ficti-
tious “friction” term represents the diffusion of the excitation occurring in an unbounded
system.

The considered system is that of Fig. 3.1: a one-dimensional harmonic chain where
the i-th oscillator has a mass mi and a natural frequency ωi and is coupled to its nearest
neighbors through the springs with elastic constants Ki−1,i and Ki,i+1 respectively. This
is a many-body problem not solvable analytically in a general context and which would
involve a subtantial computational resources when doing a numerical solution. Besides,
typical algorithms available, such as Runge-Kutta, do not warrant a perfect reversible
dynamics. This last is a fundamental requirement if one seeks to test time reversibility.
We may get inspiration from the Trotter method [Rae96] used in the quantum reversal
procedures of the previous chapter. There, a good approximation to the overall dynamics
was obtained by composing the analytical time reversible solutions of the equations of
motion for each pair of coupled degrees of freedom in a time step τ . Now the idea would
be to solve the coupled motion of pairs of particles. With this purpose we could rewrite
the Hamiltonian of Eq. (3.8) in terms of each coupling by separating it as a sum of
non-interacting terms including either even pairs or odd pairs as

H = H1 +H2 = H1,2 +H3,4 + . . . H2,3 +H4,5 + . . . . (3.51)

Here, each elemental Hamiltonian takes the form

Hi,i+1 =
p2
i

2m̃i

+
m̃iω̃

2
i

2
u2
i +

p2
i+1

2m̃i+1

+
m̃i+1ω̃

2
i+1

2
u2
i+1 +

Ki,i+1

2
(ui+1 − ui)2 , (3.52)

where the effective masses and natural frequencies satisfy

m̃1 = m1, ω̃1 = ω1, m̃N = mN , ω̃N = ωN , (3.53)

m̃i = 2mi, ω̃i = ωi/2, i = 2, . . . , N − 1. (3.54)

Therefore, the equations of motion corresponding to the pair described in Hi,i+1 are

üi = −
(
ω̃2
i +

Ki,i+1

m̃i

)
ui +

Ki,i+1

m̃i

ui+1, (3.55)

üi+1 = −
(
ω̃2
i+1 +

Ki,i+1

m̃i+1

)
ui+1 +

Ki,i+1

m̃i+1

ui. (3.56)
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Since the equations of motion are solved separately, we can consider the system of two
coupled oscillators, e.g.

ü1 = −ω2
1u1 + ω2

12u2, ü2 = −ω2
2u2 + ω2

21u1. (3.57)

For this system, the corresponding time evolution operator U12(τ) relating the displace-
ments and velocities in the basis {u1, u2, v1, v2} is readily obtained as

(
u(t+ τ)
v(t+ τ)

)
=

(
Uu(τ) Uv(τ)
Vu(τ) Vv(τ)

)(
u(t)
v(t)

)
(3.58)

with

Uu(τ) = Vv(τ) =

(
Ω2

+ cos(τ−)−Ω2
− cos(τ+)

∆ω2

ω2
12[cos(τ−)−cos(τ+)]

∆ω2

ω2
21[cos(τ−)−cos(τ+)]

∆ω2

Ω2
+ cos(τ+)−Ω2

− cos(τ−)

∆ω2

)
, (3.59)

Uv(τ) =




Ω2
+ω
−1
− sin(τ−)−Ω2

−ω
−1
+ sin(τ+)

∆ω2

ω2
12[ω

−1
− sin(τ−)−ω−1

+ sin(τ+)]
∆ω2

ω2
21[ω

−1
− sin(τ−)−ω−1

+ sin(τ+)]
∆ω2

Ω2
+ω

1
+ sin(τ+)−Ω2

−ω
−1
− sin(τ−)

∆ω2


 , (3.60)

Vu(τ) =

(
Ω2
−ω+ sin(τ+)−Ω2

+ω− sin(τ−)

∆ω2

ω2
12[ω+ sin(τ+)−ω− sin(τ−)]

∆ω2

ω2
21[ω+ sin(τ+)−ω− sin(τ−)]

∆ω2

Ω2
−ω− sin(τ−)−Ω2

+ω+ sin(τ+)

∆ω2

)
. (3.61)

Here, ω2
± are the characteristic frequencies

ω2
± =

ω2
1 + ω2

2

2
±
√(

ω2
1 − ω2

2

2

)2

+ ω2
12ω

2
21, (3.62)

and
τ± = ω±τ, Ω2

± = ω2
± − ω2

1, ∆ω2 = ω2
+ − ω2

−. (3.63)

At each small time step τ ¿ ω−1
x , the evolution for the even couplings is obtained and

the resulting displacements and velocities are used as the initial conditions for the odd
couplings and so on. This gives the complete time step operator as

UPP(τ) = U2(τ)U1(τ), (3.64)

and can be summarized in the Pair Partitioning algorithm:

1. Determine all the masses and natural frequencies of the partitioned system m̃n, ω̃n.

2. Calculate the corresponding characteristic frequencies ω± and compute the 4 × 4
evolution operator for every coupling on the system.

3. According to the initial displacements and velocities {ui(0), vi(0)}, calculate the
time step evolution in the odd couplings through the operators U12(τ),U23(τ), . . ..
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4. Use the obtained values {ũi(τ), ṽi(τ)} as the initial displacements and velocities in
the time step calculation for the even couplings and compute {ui(τ), u̇i(τ)}.

5. Return to the step 3 with {ui(τ), u̇i(τ)}.

Therefore, by applying the PP algorithm n times we solve the displacements and
velocities for all oscillators in the whole period 0 < t < nτ .

As an example, we consider the homogeneous system where the N oscillators have
identical masses and the surface oscillators are coupled to fixed points yielding the natural
frequencies ω1 = ωN = ωx =

√
K/m. The displacement amplitude of the i-th oscillator

due to an initial displacement in the j-th oscillator can be calculated analytically as

ui←j(t) =
2

N + 1

N∑

k=1

sin

(
ikπ

N + 1

)
sin

(
jkπ

N + 1

)
cos(ωkt)uj(0), (3.65)

with

ωk = 2ωx sin

(
kπ

2(N + 1)

)
, (3.66)

the characteristic frequency for the k-th normal mode.
We can test the accuracy of the method by considering an initial situation in which

all the oscillators are in their equilibrium positions except for the first one. If u1(0) = u0

is the initial displacement, the relative error

ε(t) =

∣∣u1(t)− uPP
1 (t)

∣∣
u0

, (3.67)

accounts for the difference between the analytical and numerical evolutions of the dis-
placement of the first oscillator. We use a chain of N = 200 oscillators for several values
of the time step going from τ = 0.001ω−1

x until τ = 0.01ω−1
x and take the maximum value

of the above error.
As we can see from Fig. 3.6, the error drops as the temporal step τ diminishes. We

observe also a quadratic dependence max ε(t) = ατ 2 in complete analogy with the Trotter
method. In the particular case of the homogeneous system, the obtained coefficient results
α ' 0.0445. Furthermore, we taken N enough large such that no mesoscopics echoes
[PLU95] appear in the interval of time shown in the inset.

Note that here, as a consequence of the separation in the Hamiltonian, the total
energy is not exactly conserved but fluctuates with an amplitude ∆E around the ideal
conserved value. Since ∆E is proportional to τ 2, it becomes negligible for typical cases
where τ ' 0.01ω−1

x .

3.3.1 Unbounded systems as damped oscillations

The solution of wave dynamics in an infinite medium remains as a delicate issue. In
such case, the initially localized excitation spreads away through the system. If one
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Figure 3.6: Relative errors in the PP method for different time step values. Inset: ana-
lytical evolution of the surface oscillator displacement.

measures the amount of remaing energy in a given region of the space, one would see
that it decays with a power law that depends on the dimensionality of the system. In a
local perspective, this decay resembles what happens in presence of friction, where energy
decays exponentially. In contrast, finite conservative systems present periodic revivals,
known as mesoscopic echoes, manifesting the fact that the energy remains in the system.
In a practical computational set up one needs to restrict the calculations to a finite number
of oscillators and still one would like to describe a form of “escape” or energy loss that
gets rid of the mesoscopic echoes. With this purpose we add a fictitious “damping” region
where frictional forces grow from zero to very strong values as the oscillators approach
to the boundaries. The friction coefficients ηi can be included between the third and
fourth steps of the PP algorithm by imposing an exponential decay of the displacement
amplitude as

ui(t)← ui(t) exp(−ηiτ). (3.68)

As occurs in an underdamped oscillator in the limit η/ωx ¿ 1, the effective frequency
remains almost the same. Hence, we choose a progressive increasing in the damping terms
as a linear function of the position

ηi = α
i− xR
N − xR , i = xR, . . . , N. (3.69)

It is clear that the determination of these values constitutes by itself a subtle operation.
This is because one wants to avoid, in addition to the mesoscopic echoes, the reflections
due to mismatching inside the damping zone. Therefore, the value of the slope α(N−xR)−1
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has to be small as compared with ωx in order to ensure adiabaticity. On the other
hand, final damping has to be important, say a fraction of ωx, so the surface effects
can not propagate to the interior region. In this last case the localization length ξ =
a/ sinh−1 [α/ωx] extends for a few lattice constants a.
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Figure 3.7: Left panel: comparison between the undamped (black solid) and the damped
evolutions with α = 0.01 (red dotted) and α = 0.1 (blue dashed). Right panel: corre-
sponding local density of states for the mentioned systems. For a better visualization, the
area under the curve is plotted.

For the previous homogeneous system with N = 200 oscillators we will assume that
the cavity ends at the site xR = 10. We compare the displacement amplitude in xR for
the undamped case with two dampings α = 0.01 and α = 0.1. In the left panel of Fig. 3.7
is shown the dynamics in the undamped system (black solid) presenting the mesoscopic
echo around the time tM ' 2Nω−1

x . For the damped systems, we observe that the echo
still survives for α = 0.01 (red dotted) and finally vanishes for α = 0.1 (blue dashed). In
the right panel are displayed the real parts of the Green’s functions as indicative of the
local density of states in xR

JR(ω) = − 1

π
ω Im DR,R(ω) (3.70)

= − 1

π
Re GR,R(ω) (3.71)
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Here, we can see how the structure associated to the system without friction is lost as we
increase the value of α and, finally, the typical density of the infinite system is recovered.

3.4 Summary

To sum up, we designed a novel procedure that achieves the exact reversal in the classical
wave dynamics. This was achieved in the discrete form of the classical wave equation,
modeled through a harmonic chain of coupled oscillators. Here, the displacements and
velocities of the oscillators were obtained as a solution to the equation of motion that
arises from the discrete wave equation. The solution to this equation was expressed as
the position-momentum response of the oscillators to an instantaneous impulsive force
that sets the initial momentum. The corresponding position-position response was then
deduced through a displacive force that yields the initial position and both responses (i.e.
the classical Green’s functions) were related. This allowed us to solve the time reversal
dynamics by following the same scheme of Chapter 2 and derive the classical PIF.

In the internal source case, where the internal excitation is either created inside the
cavity or results from a well resolved incoming wave, we found as in the quantum PIF,
that the prescription corrects the TRM through factors containing the group velocities in
the transducers, regardless the internal feedback of the cavity. In this classical case where
the propagation obeys a linear dispersion, the group velocity is essentially the speed of
sound. Therefore, the resulting PIF filter remains as a constant prefactor and the TRM
achieves the exact reversal. However, periodicity or scattering due to inhomogeneities in
the outer region would give a nontrivial structure in the frequency dependence of such
velocities. For these cases, the PIF correction will improve the TRM procedure and may
constitute a powerful tool in the focalization of classical waves. In particular, the PIF
correction could provide a direct improvement over the experiments done in the focusing
of elastic waves [MPN07, CBB08].

Additionally, we developed a novel numerical technique, the pair partitioning method,
that faithfully reproduces the propagation of acoustic waves in harmonic lattices. The
method showed to be perfectly reversible and the propagation in boundless systems, re-
quired for the PIF prescription, can be easily reproduced in terms of finite systems where
the oscillators near the boundaries carry damping processes.
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Chapter 4

Semiclassical time reversal focusing

As we have shown in the last two chapters, the PIF prescription corrects the TRM in
order to ensure an exact reversed dynamics. This result was obtained in both quantum
and classical discrete systems, that enabled a clear separation between the cavity and
the outside regions. Now that we have a formal prescription that achieves the perfect
reversal, we seek for the stability of the TRM procedure in cases where the conditions
for exact reversal are not completely fulfilled. As an example of such situation, consider
the TRM experiments in closed chaotic cavities where the excitations persist over time
without decaying. Here, a single transducer is enough to perform the desired time reversal
[DFi97]. A prominent feature is that, the refocusing improves with the chaoticity of the
cavity. While various analytical techniques were employed to attempt a description of
these experiments, one may safely say that a conceptual explanation is still lacking. As
antecedents we may mention an analysis of wave fields in the momentum-space represen-
tation (Wigner’s transform) that has been used to understand how multiple scattering
enhances the spatial resolution of the refocused signal [BRy03]. Diagrammatic perturba-
tion theory has been able to account for the symmetry-induced interference enhancements
in the refocalization observed in disordered media [RTD04]. The strategies proper of con-
trol theory are natural but do not contribute much to the understanding [BFi02]. Finally,
the contrasting stability properties of TRM with wave and particle propagation through
a multiple scattering medium has been addressed in Ref. [SSc98], without reaching a
definite conclusion.

In this chapter, we present a detailed calculation of the focalization amplitude that
is obtained through the TRM procedure for times close to the expected refocusing and
positions near the source point where the recovering takes place. We use the semiclassical
approach to quantify the quality of the reconstructed signal in terms of temporal and
spatial extensions. Besides, we obtain the scaling of the focalization amplitude with
the temporal emission interval in order to compare with the experimental and numerical
results for the time reversal of elastic waves [DFi97].

We start by introducing the propagators that are involved in the calculus of the fo-
calization amplitude as an expansion in their related classical trajectories according to
the semiclassical approximation. Thus, by a detailed evaluation of the weights of each
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Chapter 4. Semiclassical time reversal focusing

trajectory, we integrate over all possible paths and obtain the scaling of the resulting focal-
ization amplitude with the recording/emission interval. We begins with the most simple
case where the original excitation has no initial momentum and evaluates the maximum
of the focalization in the focal point, i.e. the center of the original wave packet, at the
refocusing time. The spatial and temporal extensions of this focalization follows a straight-
forward algebra and yield the resulting reversed propagation. Moreover, we re-obtain the
scaling of the focalization through an alternative strategy that assumes an ergodic cavity
and performs an average over the phase-space. Finally, we validate our analytical results
confronting them numerically in a two-dimensional chaotic stadium.

4.1 Semiclassical expansion of the quantum TRM

A time reversal mirror experiment starts with a high frequency signal emitted at t = 0 at
the position r0 inside the cavity. Such excitation can be interpreted within the ray picture
as an initial wave packet ψp0(r) = 〈r| ψp0(t = 0)〉 centered around r0 and with momentum
p0 that evolves and is recorded by a transducer (or an array of them) at position(s) ri
(i = 1, 2, . . . , N) for times within the interval (t1, t2). Then, the signal detected by the
transducer for times t > t1 is

ψ(ri, t) =

∫

A
dr′K(ri, r

′, t)ψp0(r′), (4.1)

with A the area (volume) of the cavity and

K(ri, r
′, t) = i~G(ri, r

′, t) = 〈ri| e−iHt/~ |r′〉 , (4.2)

is the quantum propagator describing the time evolution of the wave from r′ to ri in
the time t > 0. The recording process takes a period ∆T and finally ends up at the
time t2 = t1 + ∆T . Thus, after a waiting time tR > t2, the recorded signal is reversed
and emitted during the subsequent interval between t′2 = 2tR − t2 and t′1 = 2tR − t1.
The injected wave propagates from the transducer and interferes constructively in the
focal region, giving rise to the refocusing of the original excitation. Once the emission
has finished (t > t′1), the signal detected in the source region, defined as the focalization
amplitude, can be computed as

Fp0(r, t) =

∫ t′1

t′2

dτK(r, ri, t− τ)χTRM(ri, τ) (4.3)

=

∫ t′1

t′2

dτK(r, ri, t− τ)

∫

A
dr′K∗(ri, r′, 2tR − τ)ψ∗p0

(r′), (4.4)

where the TRM injection is the time reversal of the detected signal. In order to get a
focalization that scales as a wave function, the injection should account for an additional
constant factor like the 2V/~ used in the second chapter. The focusing is expected at
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4.1. Semiclassical expansion of the quantum TRM

2tR, which is redefined as the time origin [DFi97], and is schematically shown in Fig. 4.1.
Performing the change in the integration variable as τ → 2tR − τ , we obtain [TSo07]

Fp0(r, t) =

∫ t2

t1

dτK(r, ri, t+ τ)

∫

A
dr′K∗(ri, r′, τ)ψ∗p0

(r′). (4.5)

The propagator K(r, ri, t+ τ) corresponds to the re-emitted signal, which is obtained by
time reversing the evolution of the initial state with the propagator K∗(ri, r′, τ). We do
not write the initial temporal arguments of the propagators, as they are taken to be 0.

t1 t2 t
R

t’1t’2

2t
R

t0

Excitation Recording Emission Focalization

Figure 4.1: Scheme of the involved times in the TRM sequence.

Working in two-dimensional systems, the initial excitation can be faithfully represented
by a Gaussian wave packet

ψp0(r′) =
1√
πσ

exp

[
i

~
p0 · (r′ − r0)− (r′ − r0)2

2σ2

]
, (4.6)

centered around r0 and with dispersion σ. The initial momentum p0 gives the main energy
and direction of the excitation. In the semiclassical approximation, the propagator can
be expanded as a sum over classical trajectories s(r′, r, τ) linking the points r′ and r in a
time τ [BBh97],

K(r, r′, τ) '
∑

s(r′,r,τ)

Ks(r, r
′, τ), (4.7)

according to the Van Vleck’s formula1

Ks(r, r
′, τ) =

1

2πi~
C1/2
s exp

[
i

~
Ss(r, r

′, τ)− i

2
πµs

]
. (4.8)

Here, Ss(r, r
′, τ) denotes the action as the time integral of the Lagrangian L

Ss(r, r
′, τ) =

∫ τ

0

dt Ls(rs(t), ṙs(t); t), (4.9)

over the classical path s. The Maslov index µs accounts for the number of conjugates
points along s. In the diagonal approximation taken here, this factor vanishes since it

1Actually, it was Gutzwiller who later added the Maslov index µs [HTS92].
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Chapter 4. Semiclassical time reversal focusing

appears in both propagators and hence we can neglect it. The Jacobian Cs = |det(Bs)|
acts as the stability factor that sets the weight of the s-th trajectory with

[Bs]n,m = − ∂2Ss
∂rn∂r′m

, (4.10)

the derivatives of the action with respect to the components of the initial and final posi-
tions.

Since we assume a highly localized initial wave packet in the source point r0, we can
expand the action integral in terms of those slightly modified trajectories s̃ departing from
the center of the wave packet and reaching ri in a time τ as

Ss(ri, r
′, τ) ' Ss̃(ri, r0, τ) +

∂

∂r′
Ss(ri, r

′, τ)

∣∣∣∣
r′=r0

· (r′ − r0), (4.11)

= Ss̃(ri, r0, τ)− ps̃ · (r′ − r0), (4.12)

with ps̃ the initial momentum of the trajectory s̃. Therefore, the detected signal at the
transducer point takes the form [JPa01, GWR08]

ψ(ri, τ) =
(
4πσ2

)1/2
∑

s(r0,ri,τ)

Ks(ri, r0, τ) exp

[
− σ2

2~2
(ps − p0)2

]
. (4.13)

In general, we evaluate the focalization amplitude for times t close to the refocusing
and positions r near r0. Thus, the action integral in the propagator of the returning waves
can be expanded both in space and time according to

Ss′(r, ri, t+ τ) ' Ss̃(ri, r0, τ)− Es̃ t+ ps̃ · (r− r0). (4.14)

Since we are dealing with those trajectories that arrive to r0 from the transducer, the
starting and ending points are exchanged. Here we assume reciprocity in the semiclassical
propagators, provided that the action integrals Ss̃(ri, r0, τ) and Ss̃(r0, ri, τ) are the same
when traveled from ri to r0 and back. Hence, the sign of the momentum results opposite
as compared to that of Eq. (4.12). Furthermore, the expansion around the focalization
time gives an additional term accounting for the energy of the trajectory

Es = − d

dt
Ss(r, ri, τ + t)|t=0 . (4.15)

Therefore, the focalization signal writes as a double sum involving trajectories going from
r0 to ri according to

Fp0(r, t) =
σ

2π3/2~2

∫ t2

t1

dτ
∑

s̃(r0,ri,τ)

∑

s(r0,ri,τ)

√
CsCs′ exp

{
− σ2

2~2
(ps − p0)2 +

+
i

~
[Ss̃(ri, r0, τ)− Ss(ri, r0, τ)− Es̃ t+ ps̃ · (r− r0)]

}
. (4.16)
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4.2. Focalization in the optimal condition

For different trajectories, the resulting fast oscillations in the action integral yield a small
correction that can be neglected2. In the present work, we will consider only the main
contribution given by the diagonal approximation, in which the same trajectories are kept
(s = s′) and this leads to a focalization signal

Fp0(r, t) = σ
2π3/2~2

∫ t2

t1

dτ
∑

s(r0,ri,τ)

Cs exp
[
− σ2

2~2 (ps − p0)2 + i
~ [ps · (r− r0)− Est]

]
.

(4.17)
In billiards, the same geometrical path ŝ(r0, ri) can correspond to different traveling

times that depend on the magnitude of the momentum. The energy and momentum
can be expressed in terms of the length Lŝ and the traveling time τ as Es = p2

s/2m
and ps = mLŝ/τ respectively. Furthermore, the stability factor Cs decreases for long
times as exp(−λsτ), with λs the largest Lyapunov exponent, whereas for the short time
limit, it presents a ballistic behavior [CPJ04]. Assuming a uniformly hyperbolic dynamics
[GWR08], and using λsτ = λ̂Lŝ (with λ̂ an inverse length), we write

Cs =
2m2λ̂Lŝ
τ 2

exp(−λ̂Lŝ). (4.18)

The sum over trajectories can be converted into an integral over lengths by introducing
the density [Sie99]

dN(L)

dL
=

π

λ̂A exp(hL). (4.19)

For closed systems h = λ̂, and the long paths linking r0 to the transducer can be considered
uniformly distributed along all directions. Hence, the sum over trajectories can then
be replaced by a double integral over lengths and initial angles leading to the general
expression of the focalization amplitude as

Fp0(r, t) =
m2σ√
π~2A

∫ t2

t1

dτ

τ 2

∫ 2π

0

dϕ

2π

∫ ∞
Ld

dL L exp

[
− σ2

2~2

(
mL

τ
e(ϕ)− p0

)2

+
i

~
mL

τ
e(ϕ) · (r− r0)− i

~
mL2

2τ 2
t

]
, (4.20)

where e(ϕ) is the unitary vector that refers to the direction of the trajectory with respect
to the initial momentum and Ld is the typical length of the shortest trajectory linking r0

and ri. Throughout this chapter we evaluate this formula by including the extensions of
the parameters p0, t and r respectively.

4.2 Focalization in the optimal condition

As a first step in the evaluation of the focalization, we start with the simplest form by
setting p0 = 0 and the optimal conditions t = 0 and r = r0. We use this condition in order

2Higher order contributions might be included by accounting for correlations between specific pairs of
trajectories as in Ref. [GWK09].
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Chapter 4. Semiclassical time reversal focusing

to readily obtain the scaling of the focalization with the temporal width ∆T = t2−t1 that,
as we shall see, it maintains the same form as that with a finite momentum configuration.
From the general form of Eq. (4.20), the surviving term in the exponential yields the
maximum refocusing Fmax = F0(r0, 0) as the integral

Fmax =
m2σ

π3/2~2A
∫ t2

t1

dτ

τ 2

∫ ∞
Ld

dL L exp

[
−
(
L

ντ

)2
]
, (4.21)

where ν =
√

2~/mσ is the “mean spread” velocity of the wave packet. Denoting Lj = νtj
as the typical traveled lengths of the wave packet at the beginning (j = 1) and the end
(j = 2) of the recording stage, we perform the time integration and obtain

Fmax =
(t2 − t1)

σA

{∫ ∞
Ld/L2

dl [1− erf(l)] + t1

∫ Ld/L1

Ld/L2

dl [1− erf (l)]

}
, (4.22)

where

erf(x) =
2√
π

∫ x

0

e−z
2

dz, (4.23)

stands for the error function. The assumptions made on Cs and dN(L)/dL are valid for
lengths a few times larger than Ld. However, our approximation is appropriate since we
assume that we start recording at times t1 larger than the corresponding Ehrenfest time
of the system, i.e. the typical contributing trajectories “feel” the chaotic nature of the
dynamics. Therefore, we work under the hypothesis Ld ¿ L1 < L2, that also allows us
to neglect the last integral, leading to

Fmax =
1√
πσA∆T. (4.24)

The scaling of the refocused signal with the injection interval ∆T is a quite natural
result, experimentally observed in Ref. [DFi97]. On the other hand, the scaling with A
has not been systematically tested so far. This scaling arises for the elemental area A0

(here A0 = 1) corresponding to a single transducer and may read as A0/A. In the case
where there is an array with N transducers, we simply have to integrate this last result
over the involved “injection area” AN , but the surprising fact that just one detector is
enough stems from Eq. (4.24). Additionally, the same normalization factor of the original
excitation appears as indicative of the recovered state. In the following chapter we will
describe this in more detail within the scheme of the Loschmidt echo where the overlap
between the recovered and original states is taken.

In order to test this result, we performed a numerical evolution in a quarter of the
Bunimovich billiard (see Fig. 4.2), which is a paradigm of classical chaotic dynamics. In
a tight-binding model of the system, we calculate the evolution through a second order
Trotter-Suzuki algorithm as in the quantum examples shown in chapter 2. We start
with a Gaussian wave packet with σ = 10a (a is the lattice constant) and p0 = 0, and
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4.2. Focalization in the optimal condition

r0

r
i

Original Excitation

Transducer

Figure 4.2: Schematics of the Bunimovich stadium. The original wave packet is centered
around r0 and we use a single transducer placed in ri.

compute the evolution in a single point of the lattice. In the emission process, we assume
an empty cavity since the remaining signals have already decayed at the level of noise.
Alternatively, we may assume a decay due to absorption processes taking place at time
scales much longer than t2 in order to remain the registered dynamics unaffected.
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Figure 4.3: Numerical scaling with the temporal emission window ∆T for the areas A1

(black dots) and A2 (blue dots) respectively.

As shown in Fig. 4.3, the maximum values of the focalization amplitude are plotted
for several periods ∆T increasing by steps of 4000 ~/V and for two different areas. In the
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Chapter 4. Semiclassical time reversal focusing

example, we take A1 = 100× 200 a2 and A2 = 150× 300 a2 maintaining the same width
of the Gaussian. As we can observe, there is a linear dependence with the emission period
as described by Eq. 4.24. Although the slope ai decreases with the area of the system,
the obtained ratio a1/a2 ' 2.6 differs from our analytical findings where

a1

a2

=
A2

A1

= 2.25. (4.25)

This may be because the semiclassical limit works properly when a ¿ σ ¿ Lb, with
Lb the size of the billiard, and this is not completely fulfilled numerically. Hence, it may
appear other effects related with the discreteness of the system or higher order corrections
to the diagonal approximation.

4.2.1 Momentum contribution

Here we extend the above result for an initial Gaussian state with finite momentum and
considering the optimal conditions r = r0 and t = 0. Defining ϕ as the subtended angle
between the trajectory departing from r0 and the initial momentum, we have e(ϕ) · p0 =
p0 cosϕ and the argument in the exponential of Eq. (4.20) can be rewritten as

− σ2

2~2

(
p2

0 sin2 ϕ+

(
mL

τ
− p0 cosϕ

)2
)
. (4.26)

Hence, we proceed with the corresponding time integral as

I1(L,ϕ) =

∫ t2

t1

dτ

τ 2
exp

[
− σ2

2~2

(
mL

τ
− p0 cosϕ

)2
]

(4.27)

=

√
π~√

2mσL
[erf(η1)− erf(η2)] , (4.28)

where we have taken the replacement

ηi =
L

νti
− p0

mν
cosϕ. (4.29)

The next step is to calculate the integral over lengths given by

I2(ϕ) =

∫ ∞
Ld

dL L I1(L,ϕ), (4.30)

and we perform the following definitions

li = L/νti, and lϕ =
p0

mν
cosϕ. (4.31)
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4.2. Focalization in the optimal condition

As in Eq. (4.21), the terms in the above integral are regrouped according to

I2(ϕ) =
√
π~2

(mσ)2

{
∆T

∫ ∞
Ld/L2

dl [1− erf(l − lϕ)]− t1
∫ Ld/L1

Ld/L2

dl [1− erf(l − lϕ)]

}
. (4.32)

Again, the recording process is assumed to start once the wave packed has been spread out
throughout the cavity. It may result important to note that this spreading corresponds
to two different mechanisms:

1. As in the zero momentum case, the free evolution of the original wave packet presents
“quantum diffusion” that yields a time dependent width

σt =

√
σ2 +

(νt)2

2
, (4.33)

and it allows the whole incursion at least in the real space.

2. On the other hand, if the wave packet starts with a large momentum (p0 À mν),
the involved classical trajectories starting around the initial condition (r0,p0) will
separate exponentially with a rate given by the corresponding Lyapunov exponent.
Hence, the phase space is completely explored once we start with the registration.

We will return to this point in Sec. 4.5 when tackling the differences in the recovered
signal between chaotic and regular systems. Regardless of the involved mechanism, the
lengths that are related to the recording signal satisfy Ld ¿ L1 < L2 and hence the last
integral can be approximated as

I2(ϕ) '
√
π~2∆T

(mσ)2

∫ ∞
0

dl [1− erf(l − lϕ)] , (4.34)

'
√
π~2∆T

(mσ)2

[
exp(−l2ϕ)√

π
+ lϕ [1 + erf(lϕ)]

]
. (4.35)

Therefore, the optimal focalization writes

Fp0(r0, 0) =
∆T

σA e
−σ2p2

0/2~2

{
1√
π

+

∫ 2π

0

dϕ

2π
K cosϕ eK

2 cos2 ϕ [1 + erf (K cosϕ)]

}
, (4.36)

where K = p0/mν. Because of the periodicity in the arguments in the range (0, 2π),
the first integral vanishes. By expanding the exponential and the error function and
integrating term by term, we show in the Appendix C that

I3 =

∫ 2π

0

dϕ

2π
K cosϕeK

2 cos2 ϕerf (K cosϕ) =
eK

2 − 1√
π

, (4.37)

and hence,

Fp0(r0, 0) = Fmax =
1√
πσA∆T, (4.38)
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resulting in the same maximum focalization than that of Eq. (4.24) obtained for an
initial state with zero momentum. The independence in the scaling with the momentum
coincides with the expected recovering of the initial state evaluated in r0. However, as we
shall see in the following section, the inversed momentum appears once we evaluate the
time extension of the reversed signal.

4.3 Spatial and temporal resolutions

In addition to the focalization in the optimal condition, the experiments have shown that
the same scaling is also observed in the temporal and spatial extends of the reconstructed
signal. In order to evaluate the complete focalization, we work in the general situation
presented in Eq. (4.20). In this case, the argument in the exponential is rearranged by
completing squares and it can be rewritten as

− σ2

2~2

[(
p2

0 −
(p′0 cosϕ)2

γ

)
+ γ

(
mL

τ
− p′0 cosϕ

γ

)2
]
, (4.39)

where we made the replacements

γ = 1 + i
~t
mσ2

, p′0 = p0 + i
~
σ2

(r− r0), (4.40)

and e(ϕ) · p′0 = p′0 cosϕ with

p
′2
0 = p2

0 + 2i
~
σ2

p0 · (r− r0)− ~
2

σ4
(r− r0)2. (4.41)

The focalization amplitude takes the form

Fp0(r, t) =
m2σe−σ

2p2
0/2~2

√
π~2A

∫ 2π

0

dϕ

2π
exp

[
σ2

2~2γ
(p′0 cosϕ)

2

] ∫ ∞
Ld

dL L I1(L,ϕ), (4.42)

with the time integral

I1(L, ϕ) =

∫ t2

t1

dτ

τ 2
exp

[
− σ2

2~2
γ

(
mL

τ
− p′0 cosϕ

γ

)2
]
. (4.43)

Note here that the only difference with the previous case of Eq. (4.27) is the argument
p′0 that not only accounts for the initial momentum but also has been extended into
the complex domain through the mean spread velocity. By labeling α as the phase in
γ = eiα |γ| and performing the replacements

ηi =
σeiα/2

√
2~
|γ|1/2

(
mL

ti
− p′0 cosϕ

γ

)
, (4.44)
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we obtain the following expression for the time integral

I1(L,ϕ) =

√
πν

2L

e−iα/2

|γ|1/2
[erf(η1)− erf(η2)] . (4.45)

In analogy with Eq. (4.30), the integral over lengths can be written according to

I2(ϕ) =

∫ ∞
Ld

dL L I1(L,ϕ) (4.46)

=

√
πν

2

e−iα/2

|γ|1/2
∫ ∞
Ld

dL [erf(η1)− erf(η2)] . (4.47)

Thus, defining li = L/ν ′ti, and lϕ = p′0 cosϕ/(mν ′γ) with

ν ′ =

√
2~

mσ |γ|1/2
, (4.48)

the integral reads

I2(ϕ) = ν2√πe−iα/2

|γ|

{
∆T

∫ ∞
Ld/L2

[
1− erf

(
eiα/2(l − lϕ)

)]
dl+ (4.49)

+ t1

∫ Ld/L1

Ld/L2

[
1− erf

(
eiα/2(l − lϕ)

)]
dl

}
. (4.50)

Again, the assumption Ld ¿ L1 < L2 provides that the first term, proportional to ∆T ,
dominates over the second one and yields

I2(ϕ) =

(
~
mσ

)2 √
πe−iα/2

|γ| ∆T

[
e−iα/2

√
π

exp(−eiαl2ϕ) + lϕ
[
1 + erf

(
eiα/2lϕ

)]]
. (4.51)

Therefore, the general focalization amplitude writes

Fp0(r, t) =
e−σ

2p2
0/2~2

γσA ∆T

(
1√
π

+ I4

)
, (4.52)

where I4 is the following integral over angles

I4 =

∫ 2π

0

dϕ

2π
eiα/2lϕ exp

(
eiαl2ϕ

) [
1 + erf

(
eiα/2lϕ

)]
. (4.53)

By taking the replacement

eiα/2lϕ =
e−iα/2

|γ|1/2
σ√
2~

p
′
0 cosϕ = K cosϕ, (4.54)
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and noticing that the integration over the first term vanishes regardless the value of α,
we found I4 = I3 and the recovered signal writes

Fp0(r, t) =
e−σ

2p2
0/2~2

√
πγσA ∆T exp

(
σ2

2~2

p
′2
0

γ

)
. (4.55)

This focalization then becomes

Fp0(r, t) =
Fmaxe

iα

√
1 + (~t/mσ2)2

exp

[
−(r− r0)2

2σ2γ
+

i

~
p0

γ
·
[

p0t

2m
+ (r− r0)

]]
, (4.56)

which has the form of a reversed wave respect to the original one. The magnitude of the
focalization amplitude is thus given by

|Fp0(r, t)| = ∆T√
πσtA exp

[
−(r− r0 + p0t/m)2

2σ2
t

]
, (4.57)

where σt obeys Eq. (4.33). As we can see, the obtained recovering corresponds to the
perfect reversal of the wave packet for times close to the focalization and in the focal
region. From a slightly different point of view, the scaling factor ∆T/A appears as a
consequence of the “redundancies” in the detected signal. For instance, if the emission is
taken over a series of small temporal windows ∆T/Nt as

tn1 = t01 +
∆T

Nt

n, (4.58)

tn2 = tn1 +
∆T

Nt

(4.59)

the signals arising in each interval will only interfere constructively in the focal region
with the same contribution |Fp0(r, t)| /Nt.

As we will show in the following section, this result is also obtained using the ergodic
approach [Arg96] of trading the actual dynamics by averaging in the phase space. The
procedure presented in this section is more laborious than the ergodic approach, but allows
to establish the necessary conditions for the refocalization and it has the advantage of
being generalizable to the case where we introduce perturbations between the recording
and injection phases.

4.3.1 Ergodic approach

Here we look at the problem from a different perspective and introduce the ergodicity
hypothesis in order to treat the general case. The ergodic approach not only provides a
second, and more economical, way of obtaining the general result without using a detailed
knowledge of the dynamics, but also sheds some light into the necessary conditions for
achieving the refocalization condition.
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4.4. Evaluating the focusing: The Trotter-Suzuki strategy

We start with the diagonal approximation for the focalization amplitude given by
Eq. (4.17) and rewrite it according to

Fp0(r, t) =
σ

2π3/2~2

∫ t2

t1

dτ Fp0(r0, ri, r, τ), (4.60)

Fp0(r′, r′′, r, τ) =
∑

s(r′,r′′,τ)

Cs fp0(r′, r, r′′,p′), (4.61)

fp0(r′, r′′, r,p′) = exp
[
− σ2

2~2 (p′ − p0)2 − i
~Est+ i

~p
′ · (r− r′)

]
. (4.62)

The basics of the ergodic approach is to calculate quantities like Fp0(r′, r′′, r, τ) through
the average over the phase space [Arg96]. By denoting as rτ = rτ (r

′,p′) and pτ =
pτ (r

′,p′) the position and momentum at certain time τ of a particle starting with r′ and
p′ at the origin t = 0, we have

Fp0(r′, r′′, r, τ) =

∫
dp′
∫

dp′′δ (rτ − r′′) δ (pτ − p′′) fp0(r′, r′′, r,p′). (4.63)

The double delta function represents the distribution of classical trajectories. An average
over small ranges of the initial and final conditions gives a smooth distribution which
describes the evolution in a statistical sense. For sufficiently long times such a distribution
is τ independent, and uniformly distributed on the hyper-surface of constant energy (which
for two dimensional billiards has a volume Ω = 2πmA in the phase space). We therefore
have

Fp0(r′, r′′, r, τ) =
1

2πmA
∫

dp′
∫

dp′′δ
(

p′2 − p′′2
)
fp0(r′, r′′, r,p′) (4.64)

=
1

A
∫

dp′ fp0(r′, r′′, r,p′). (4.65)

Applying this general procedure to the function fp0 we obtain

Fp0(r, t) =
σ∆T

2π3/2~2A
∫

dp′ exp

[
− σ2

2~2 (p′ − p0)2 + i
~p
′ · (r− r0)− i

~
p′2

2m
t

]
, (4.66)

since the integral over τ is now trivial. Performing the Gaussian integral over p′ we recover
the wave packet of Eq. (4.57) that re-focalizes with the same shape of the original one,
but with momentum −p0.

4.4 Evaluating the focusing: The Trotter-Suzuki strat-

egy

Numerical calculations of time reversal focalization have been performed in Ref. [DFi97]
for a two-dimensional elastic cavity with the shape of a sliced disk. The signal recon-
struction could be visualized and a qualitative agreement with the experimental results
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Chapter 4. Semiclassical time reversal focusing

was found. Since we dispose now of a quantitative semiclassical theory of refocusing it
is important to test our predictions. As before, we calculate the time evolution of the
wave packet through a second order Trotter-Suzuki algorithm for a discrete Schrödinger
equation. Lattice effects are minimized by considering a¿ λB ¿ σ ¿ Lb, where λB the
de Broglie wavelength associated with p0.
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Figure 4.4: Reconstructed signal scaled with A/∆T at the emission point r0, close to
the refocusing time t = 0. The thick black solid line is the semiclassical prediction.
Numerical simulations for various ∆T [~/V ] and A: 5000 and 150 × 300 (blue dotted),
10000 and 150×300 (dark cyan dash-dotted), and 5000 and 300×600 (red dashed). Inset:
reconstructed signal at t = 0 close to r0 from the semiclassical prediction (black solid)
and simulation (red dashed) with ∆T = 5000 and A = 300× 600.

In Fig. 4.4 we show the numerical results for the time dependence on the reconstructed
signal at r0. The normalized Fp0(r0, t)A/∆T are well described by the semiclassical pre-
diction (thick black solid) confirming the scaling with ∆T and A of Eq. (4.57). The
normalizing factor for the numerical results is approximately 1.4 times the semiclassical
one. As before, such a difference may be due to our discretization of the quantum prob-
lem as well as the difficulties of the diagonal approximation to recover exact numerical
values. The signal-to-noise ratio does not change appreciably when the recording time is
doubled, while it is slightly improved by increasing A. In the inset we show the spatial
reconstruction of the wave packet around r0 at the focusing time t = 0. We see that the
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4.5. Focalization in regular systems

semiclassical prediction (black solid) provides the proper scaling behavior and, up to the
normalization factor, a quantitative description of the TRM results.

4.5 Focalization in regular systems

The implementation of the TRM for integrable geometries represents a different mech-
anism as that presented throughout the chapter for ergodic systems. The semiclassical
approach allows to understand qualitatively this important difference between chaotic and
integrable systems, since in this last case we cannot use the mentioned hypothesis in order
to get a general description of the stability factors or a precise sum rule accounting for the
exponential proliferation of the trajectories. In such situation, the periodic orbits that
take place in a regular cavity plays a central rôle in the semiclassical expansion of the
propagators and should not be disregarded.

According to the discussion presented in Sec. 4.2.1 about the dispersion of the wave
packet, we consider that the initial momentum is large as compared with the mean spread
velocity, i.e. p0 >> mν. However, the relevance of the mentioned mechanisms will depend
on the size of the system and the involved recording and emission times. The idea here is
to separate the dispersion processes in order to get a clear distinction between chaotic and
regular systems. Therefore, we start our analysis considering the case of a wave packet
bouncing through the walls of a chaotic cavity. Here, the ergodic time is reached once the
wave packet has spread in the whole system and can be assumed as the time that it takes
to get a few bounces. Hence, if Lb is the typical longitude the billiard, we could estimate
the recording times as

t1 ' n1
mLb

p0

, t2 ' n2
mLb

p0

, (4.67)

where n1 and n2 are the number of bounces of the central trajectory, i.e. the classical
path starting in r0 with the direction of p0. On the other hand, the “self-dispersion” of
the wave packet given by the time dependent width σt can be estimated for the end of
the registration and takes the form

σt2 = σ

√
1 +

(
mν

p0

nLb√
2σ

)2

. (4.68)

This last states that for a particular choice of parameters of the initial wave packet, we
can always increase the momentum according to

p0 >

√
n

2

mν√
1− (σ/Lb)2

, (4.69)

in order to maintain the width of the wave packet smaller than Lb. In consequence, we
get a ray picture of the dynamics in which the trajectories diverge only because their
bounces with the walls.
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Chapter 4. Semiclassical time reversal focusing

In contrast, for regular systems, the above equation tell us that the involved tra-
jectories will follow almost the same periodic orbit during the registration, maintaining
the original shape of the wave packet. This yield a serious consequence when evaluat-
ing the refocusing after the emission period, resulting in a signal that strongly depends
on the position of the transducers and results, at best, hardly distinguishable from the
background.

4.6 Evaluating the Loschmidt Echo: The Lanczos-

Trotter method

In this section we introduce the Lanczos method and its application to the calculation
of the TRM focalization procedure. As we shall see, the technique constitute a powerful
numerical tool that subtantially reduces the size of the basis required to compute the
relevant dynamics. Here, the calculation of the time evolution operator is performed
through the Trotter-Suzuki algorithm as before, but with the advantage that we work
with a much smaller tight-binding basis set, where truncation enhances the computing
time of the protocol. In addition, the Trotter-Suzuki represents by itself an ideal method in
the evaluation of the time reversal procedures. Besides of the unitarity property, which is
essential for the TRM, the method reproduces the injection of the detected signal without
resorting beforehand to the propagator linking the transducer and the initial wave packet.

In the Lanczos algorithm, the real basis given by the tight-binding model is trans-
formed according to the repeated application of the Hamiltonian over the initial state
|ψ0〉. If we denote by {|ϕi〉} as the orthonormal Lanczos basis, their elements are ob-
tained according to the following recurrences

|ϕ0〉 = |ψ0〉 , (4.70)

V1 |ϕ1〉 = H |ϕ0〉 − E0 |ϕ0〉 , (4.71)

V2 |ϕ2〉 = H |ϕ1〉 − E1 |ϕ1〉 − V1 |ϕ0〉 , (4.72)
...

Vn |ϕn〉 = H |ϕn−1〉 − En−1 |ϕn−1〉 − Vn−1 |ϕn−2〉 , (4.73)

where En = 〈ϕn|H |ϕn〉 can be seen as the site energies and Vn the hopping amplitudes
in the new Lanczos basis that redefines the old Hamiltonian. Hence, this new tridiagonal
Hamiltonian can be interpreted as an effective one-dimensional tight-binding system. As
shown in the scheme of Fig. 4.5, it is interesting to note here that the above equations
represent, in some sense, the “propagation” of the initial state on the cavity.

In addition to the repeated application of the Hamiltonian, the resulting states in the
Lanczos basis are built from the orthonormalization that yields the subtraction of the two
last states according to the term En−1 |ϕn−1〉+ Vn−1 |ϕn−2〉.

The central property of the Lanczos procedure is that every recursion step collects
information from a new layer of nodes. Therefore, it rapidly reaches the frontiers of
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Figure 4.5: Scheme of the Lanczos algorithm. The initial state |0〉 “propagates” through-
out the system as the novel basis is redefined.

the system and starts including multiple “reflections”. The idea is that the dynamics
calculated in this new basis collects information of all the system even now when a much
smaller number of states are included.

For the TRM procedure, we should compute the wave function that arrives to the
transducer from the initial excitation according to

ψ(rS, t) = 〈rS| exp (−iHt/~) |ψ0〉 . (4.74)

As we can see, this may represent a difficult task since we should take the projections over
|rS〉 from the basis states that come from the initial wave packet. In fact, such calculation
involves the evaluation of the complete Lanczos basis and the efficiency of the method
could be lost. In order to obtain a suitable basis where the state of the transducer |rS〉
is well represented, we can perform the Lanczos algorithm for two different initial states
{|+〉 , |−〉} that correspond to the linear combination between the initial wave packet and
a local excitation at the site of the transducer, i.e.

|+〉 =
|ψ0〉+ |rS〉√

2
, (4.75)

|−〉 =
|ψ0〉 − |rS〉√

2
. (4.76)

For each one of these initial states, we apply the recurrence formulae and define two
independent Lanczos bases that yield the Hamiltonians H+ and H− respectively. Thus,
the dynamics of the corresponding surface states is

ψ+(t) = 〈+| exp
(−iH+t/~

) |+〉 , (4.77)

ψ−(t) = 〈−| exp
(−iH−t/~

) |−〉 , (4.78)
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that can be obtained through the usual Trotter-Suzuki algorithm. Finally, the detected
wave function at the transducer location is computed according to

ψ(rS, t) =
1

2

[〈+| exp
(−iH+t/~

) |+〉 − 〈−| exp
(−iH−t/~

) |−〉 (4.79)

+ 〈+| exp (−iHt/~) |−〉 − 〈−| exp (−iHt/~) |+〉] , (4.80)

For systems with time-reversal symmetry, one is sure that the exchange term satisfies a
reciprocity relation

〈+| exp (−iHt/~) |−〉 = 〈−| exp (−iHt/~) |+〉 . (4.81)

Therefore, the calculation of the wave function reaching the transducer reduces to the
evaluation of the survival amplitudes of the “surface” states |+〉 and |−〉.

Now that we have the registered signal at the transducer, the reversion in the dynamics
can be obtained through the injection of ψ∗(rS, 2tR−t) during a period ∆T . This injection
is performed for the both Hamiltonians H+ and H− and the focalization is calculated as
the difference of both resulting propagations

ψ0(t) =

∫ t

tR

dt′ 〈ψ0| e−iH(t−t′)/~ |rS〉ψ∗(rS, 2tR − t′), (4.82)

=

∫ t

tR

dt′
[
〈+| e−iH+(t−t′)/~ |+〉 − 〈−| e−iH−(t−t′)/~ |−〉

]
ψ∗(rS, 2tR − t′).(4.83)

In consequence, the obtained focalization corresponds to the overlap between the recovered
signal and the original wavepacket.

In Fig. 4.6 we compare the propagation of a Gaussian wave packet in a closed cavity
calculated through the direct Trotter-Suzuki method and the Lanczos method for two
truncated bases with NL = 700 and 1000 sites respectively. The considered times are
those related with the registration of the signal and that given by the truncated basis
obtained from the Lanczos method. In the TRM procedure, the registration begins once
the system reaches the ergodic time, that can be assumed as a few times the mesoscopic
echo. Hence,

t1 = n tME ' 2N
~
V
n, (4.84)

where N is the number of sites along one direction in the system. Therefore, the Lanczos-
Trotter will reproduce faithfully the dynamics whenever the registration ends up for times
scales smaller than the “Lanczos mesoscopic echo” time tL that result from the truncation
of the complete Lanczos basis. In this sense, we can take t2 = m tME, with m > n
maintaining tL > t2.

It is important to note that, unlike the direct Trotter-Suzuki dynamics, this method
obtains the focalization directly as the overlap between the recovered signal and the
initial wave packet. This excludes the evaluation of the focalization contrast for different
positions. Meanwhile, we differ the numerical results until the next chapter, where it will
be used extensively, and further discussion is still in order.

74



4.7. Summary

0 200 400 600 800 1000
0,0

0,2

0,4

0,6

0,8

1,0

Time

 2D Trotter-Suzuki
 Trunc. Lanczos: NL = 700
 Trunc. Lanczos: NL = 1000

Dynamics in a closed cavity
A = 100 x 200 a2, k

0
 = 0.6 a-1,  = 10 a

Mesoscopic Echo Lanczos Echo

|
0(t)

|2

usefull period

Figure 4.6: Involved times in the wave packet propagation. The almost exact (black solid)
is contrasted with the truncated basis composed by NL = 700 (red dotted) and NL = 1000
(blue dashed) sites respectively.

As we can observe, the relevance of the method lies with the fact that obtains the time
evolution in a system composed by N ×N states through the numerical computation of
∼ N states, reducing significatively the computing time.

4.7 Summary

In conclusion, we have presented detailed semiclassical calculations of the focalization
signal for the time reversal mirror procedure where the chaotic nature of the underlying
classical dynamics appears as a necessary condition for the reconstruction. As pointed
out in Eq. (4.57), the injection of the detected propagation through a single transducer
during a finite emission interval ∆T is enough to recover the original dynamics and hence
the compression of the signal at the focusing time. Throughout the chapter, we worked
under the diagonal approximation where the involved forward and backward classical
trajectories were assumed to be the same. We observed that the focalization at the
optimal condition (r = r0, t = 0) scales linearly with the emission interval. Furthermore,
we showed that the spatial and temporal extensions of the focalization maintained this
scaling in agreement with the experimental results on elastic waves propagating in a
monocrystalline silicon wafer [DFi97]. In addition to these findings, the scaling showed to
be proportional to the number of transducers, defining the “injection area” AN used in
the protocol and inversely proportional to the total area A of the system. Interestingly,
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this scaling appears as a central result in this thesis since it may be interpreted as the fact
that there is no dependence on the location of the transducers, provided by the ergodic
property of the considered system. As we shall see in the next chapter, this constitutes
the starting point in the evaluation of the focalization in terms of the Loschmidt echo
scheme.

Although these calculations cannot be directly applied to integrable geometries, they
may provide a ray picture where the experiments show a poorer signal reconstruction with
lower signal compression, the appearance of focalization satellites, and a strong sensitivity
with respect to the position of the transducers. As we pointed out in Sec. 4.5, the
exponential proliferation of trajectories that occur in chaotic systems allows to encode the
information at all times, while in the latter the registered signal would strongly depends
on whether or not the source and the transducer are connected by a stable trajectory.

The evaluation of the focalization may be performed through a novel numerical strat-
egy based on the combination of two well known methods: the Trotter and the Lanczos
algorithms. In a two-dimensional system composed by N×N states, the Lanczos strategy
reduces the complete basis in an effective one that scales linearly with N and hence, it
enhances the computing time as compared with the usual Trotter method. This last is
achieved through the repeated application of the Hamiltonian over the initial state that
allows the collection of the relevant energies that concerns the propagation. Through a
linear combination between the initial wave packet and the basis state of the transducer,
we obtained a way to compute the recording and injection of the signal in the transducer.
This enabled us to evaluate the focalization in terms of the overlap between the recovered
excitation and the original wave packet.
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Chapter 5

Irreversible processes and the time
reversal focusing

In the previous chapter, we analyzed the recovering of an initial state that is recorded and
emitted by a single transducer following the TRM procedure in a closed chaotic cavity.
Under the semiclassical approximation, we showed that the focalization is proportional
to the emission interval and inversely proportional to the area of the cavity. In general,
the ergodic hypothesis, i.e. there are infinite ways to reach any point in a given time, is a
prominent condition for the appearance of such refocusing and enabled its analytical eval-
uation. This hypothesis provided for the redundancy implicitly required for the time and
space reconstructions. We found that the position of the transducer becomes irrelevant
and the focalization is proportional to the number of involved transducers. Throughout
the chapter, we evaluate the TRM procedure in two different situations:

1. We analyze the stability of the focalization in open cavities, where the chaotic cav-
ity is connected, through a small opening, to a waveguide or boundless propagating
medium. This also can be seen as the simplest example of a dissipative perturba-
tion or damping process leading to Im Σ = −Γ. In consequence, the focalization
intensity may be related with the nonescape probability [GMM95] of the internal
excitation.

2. For closed chaotic cavities we introduce an external perturbation Σ (Im Σ =
0), between the recording and emission stages. In this situation, we stress the
similarities with the related case of the Loschmidt echo amplitude

m(t) = 〈ψ0| exp(i(H + Σ)t/~) exp(−iHt/~) |ψ0〉 , (5.1)

where the reconstruction of an initially localized quantum state is obtained by the
inversion of the dynamics after some propagation time t, and where the involved
classical dynamics was shown to play an important rôle [JPa01].

In both cases, we readapt the expression of the focalization signal as the overlap
between the wave at the time of focusing, produced by the TRM procedure, and the
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original wave packet according to

m(t1, t2) =

∫

A
dr ψp0(r)Fp0(r, 0). (5.2)

We calculate this overlap through the semiclassical expansion of the involved propa-
gators by following a strategy [WGG08] which is a slight modification of the one used in
Chapter 4. As before, we will consider only the leading contributions that come from the
diagonal approximation.

5.1 Focalization in open systems

To start, we consider the focalization signal that takes place in the focusing time according
to the general expression of Eq. (4.5)

Fp0(r,0) =

∫

A
dr′′ g(r′′)

∫ t2

t1

dt

∫

A
dr′K(r, r′′, t)K∗(r′′, r′, t)ψ∗p0

(r′). (5.3)

Here, the detection and emission is performed by an array of N transducers that are
distributed along the cavity. The term g(r′′) represents the distribution that yields the
“injection area” of the signal such that

∫

A
dr′′ g(r′′) = AN . (5.4)

Instead of solving such focalization, which was the subject of study in the previous chapter,
we analyze the overlap given by Eq. (5.2) of the resulting reversed wave with the initial
state

m(t1, t2) =

∫

A
dr′′ g(r′′)

∫ t2

t1

dt

∫

A
dr′dr ψp0(r)K(r, r′′, t)K∗(r′′, r′, t)ψ∗p0

(r′). (5.5)

In ergodic systems, we assumed before that the recording process starts once the
available phase space has been fully explored, i.e. t1 > tE with tE the corresponding
Ehrenfest time. As a consequence of such ergodicity, the resulting focalization becomes
independent of the position of the transducers and will only account for the number of
them. Hence, the r′′ integral yields

m(t1, t2) ' AN
∫ t2

t1

dt ψp0(ri, t)ψ
∗
p0

(ri, t), (5.6)

where we assumed reciprocity in the backward propagation and ri stands for the (arbi-
trary) position of one of the transducers. As the focalization does not change with ri, we
can take the integral over all the cavity and hence

m(t1, t2) ' ANA
∫ t2

t1

dt P (t), (5.7)
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with

P (t) =

∫

A
dri ψ(ri, t)ψ

∗(ri, t), (5.8)

the nonescape probability of finding a particle still confined in the cavity [GMM95]. For
closed systems, it gives the norm of the state P (t) = 1 and therefore the time integral
trivially results

m(t1, t2) =
AN
A ∆T, (5.9)

that is, the same scaling as that of Eq. (4.57) is obtained.
For open systems, we consider an initially localized wave packet inside the cavity. A

small opening of size w is performed at the boundaries of the cavity and the norm inside
no longer conserves. Hence, the nonescape probability will decay in time due to the escape
towards the outside region, consisting of a boundless system or a waveguide. Under the
semiclassical approximation, we expand the propagators that are present in the nonescape
probability according to Eq.(4.8)

P (t) = 1
(2π~)2

∫

A
dridr′dr′′ ψp0(r′)ψ∗p0

(r′′)
∑

s(r′,ri,t)
s′(r′′,ri,t)

√
CsCs′e

i
~ (Ss−Ss′ ). (5.10)

The action integrals are then expressed in terms of those trajectories that depart from a
common point r̄ = (r′ + r′′)/2 and arrive to ri in a time t according to the usual linear
terms

Ss(ri, r
′, t) ' Ss(ri, r̄, t)− 1

2
q · ps, (5.11)

Ss′(ri, r
′′, t) ' Ss′(ri, r̄, t) +

1

2
q · ps′ , (5.12)

where q = r′− r′′ and ps (ps′) is the initial momentum related to the trajectory s (s′). If
we work under the diagonal approximation (s = s′), the above replacements yield

P (t) =
1

(2π~)2

∫

A
dridr̄

∑

s(r̄,ri,t)

Cs ρW (r̄,ps), (5.13)

with

ρW (r̄,ps) =

∫
dq ψp0

(
r̄ +

q

2

)
ψ∗p0

(
r̄− q

2

)
e−

i
~ps·q, (5.14)

the Wigner function of ψp0(r̄). For the initial state, we consider an excitation with a
well-defined energy that can be faithfully represented through a Gaussian wave packet
centered around r0 and with momentum p0 as in Eq. (4.6) and the Wigner function takes
the form

ρW (r̄,ps) = 4 exp

[
−(r̄− r0)2

σ2
− σ2

~
(ps − p0)2

]
. (5.15)

79



Chapter 5. Irreversible processes and the time reversal focusing

Here, we use the ergodic hypothesis assuming that the focalization does not depend on
the transducer’s location and the integration over positions r̄ is taken over the Wigner
function assuming that the trajectories start at the center of the wave packet. Therefore,
the integrations over the initial and final points r̄ and ri yield the following nonescape
probability

P (t) =
σ2A
π~2

∑

s(r0,ri,t)

Cs exp

[
−σ

2

~2
(ps − p0)2

]
, (5.16)

where the classical trajectories only account for the involved lenghts Ls. Again, we recall
to Eqs. (4.19) and (4.18) in order to describe the detailed form of the stability factor
and the sum rule for the involved classical trajectories. Hence, the nonescape probability
contains the additional factor e−(λ̂−h)L that accounts for the opening. As before, we
assume, for simplicity, an initial state with p0 = 0 and obtain

P (t) =
2

(νt)2

∫ ∞
Ld

dL L e−ξL exp

[
−
(
L

νt

)2
]
, (5.17)

with ν = ~/mσ and ξ = λ̂ − h. For closed systems we have ξ = 0 and the integral over
lenghts can be assumed as starting from 0 since, as always, the lenght νt of the involved
trajectories are longer than the typical size of the system. The resulting integral yields
the norm conservation ρ(t) = 1 and recovers the usual scaling of Eq. (5.9).

On the other hand, when considering the case ξ 6= 0 we assume a small opening in
order to remain unaffected the ergodic property of the corresponding closed system. In
such case, the nonescape probability decays according to

P (t) = 1−√πνξ
2
t

[
1− erf

(
νt
2
ξ

)]
exp

[(
νt
2
ξ

)2
]
. (5.18)

The time integral can be calculated through the expansion of the above exponentials and
integrating term by term in a similar way as that presented in the Appendix C for the
scaling of the focalization. Hence, the focalization obeys

m(t1, t2) =
AN
A
√
π

νξ

[
e(νt1ξ/2)2

erfc
(
νt1ξ

2

)− e(νt2ξ/2)2

erfc
(
νt2ξ

2

)]
, (5.19)

with erfc(x) = 1 − erf(x). We call this expression as the cumulative semiclassical (CSc)
and shows a steady growth until a stationary value which is reached asymptotically in a
time characterized by the decay of the wave packet. When the recording interval is small
enough so the number of contributing trajectories remain unaffected by the opening, i.e.
ν∆T << ξ−1, we can approximate the above result in terms of the characteristic decay
time. Here, the nonescape probability presents an exponential decay that can be seen as
a form of a Fermi golden rule

P (t) ' e−t/τd , (5.20)

80



5.1. Focalization in open systems

with 1/τd = νw/πA the classical escape rate at the central energy of the wave packet
[GWK09]1 and w the size of the opening such that w = π3/2Aξ/2. Therefore, if we take
t̄ = (t1 + t2)/2 as the center of the recording interval, the focalization reads

m(t1, t2) =
AN
A
∫ t̄+ ∆T

2

t̄−∆T
2

e−t/τddt (5.21)

=
AN
A 2τde

−t̄/τd sinh

(
∆T

2τd

)
. (5.22)

In addition to the usual scaling, there is an exponential attenuation that depends on
where is the center of the recording interval as compared to the decay. By increasing the
value of t̄, the above result is no longer valid and we should remit to the CSs of Eq. (5.19)
for a more accurate description of the focalization.

In order to test these results, we reproduced numerically the time evolution of a wave
packet in a stadium billiard with a small opening. In the tight-binding system employed,
the infinite waveguide which extend along the x axis and is connected to the billiard at
x = 0. This can be modeled through a finite rectangular system composed by complex
site energies that ensures the irreversible escape of the excitation. These grow linearly
according to

Γ(r) = −iη
x

Lx
, (5.23)

with Lx the horizontal length of the outer region and 0 < x ≤ Lx. In the Trotter-Suzuki
propagation of the evolution operator, these diagonal terms yield a damping of the wave
packet due to the escape to the outer region according to

ψ(r, t)← exp [−iΓ(r)τ/~]ψ(r, t), (5.24)

where τ is the time step of the algorithm. As in the harmonic oscillators of the Chapter
3, no more mesoscopic echoes appear and the decay is faithfully reproduced. Hence, since
the full propagator may be computed, we calculate the nonescape probability of Eq. (5.8)
and evaluate its corresponding time integral.

In Fig. 5.1 we show the rescaled focalization A m(t1, t2)/AN for two different sizes of
the opening. Here, the center and width of the emission window are increased simulta-
neously with t1 = 0 and t2 = t. As we can see, the diagonal approximation provides a
good description of the numerical results when t¿ τd. However, for times comparable to
the characteristic time decay, the nonescape probability exceeds the predicted value. We
observe that the obtained focalization grows faster than the FGR since the decay in the
nonescape probability is attenuated. There are two physical effects that might contribute
to enhance the survival. One is because there are waves that return to the cavity from the
environment. These provide a higher nonescape probability than that evaluated from the
FGR and, for long times, it yields a power law in the decay [RFP06]. Additionally, the

1As compared with the resulting decay of Ref. [GWK09], we include the average over time once we
compute the focalization as in Eq. 5.7.
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Figure 5.1: Rescaled focalization in an open chaotic cavity for the sizes w = 10 a (left) and
w = 20 a (right). The numerical solution (black solid) is contrasted with the cumulative
semiclassical regime of Eq. (5.19) (red dotted) and the FGR (blue dashed).

weak localization corrections [GWK09] yield a smaller diffusion constant than that result-
ing from the FGR or Random Phase Approximation. In this sense, further work would
be necessary to determine which of the two is more important it the observed increase of
the nonescape probability.

5.2 Focalization and the Loschmidt Echo

Experimentally, the TRM procedure has shown to be robust against local and global
perturbations introduced between the recording and injection periods [DRF95]. Even in
the absence of these perturbations, it is natural to expect that any TRM setup contains
some uncontrollable evolution of the environment and therefore unavoidable errors in the
reversal protocol. Furthermore, intentional changes in the setup between the recording
and emission stages may be used in the assessment of the stability of the procedure. In
the spirit of the Loschmidt echo studies [JPa01], we can visualize the effect of a generic
perturbation by writing the reconstructed signal as

Fp0(r, t) =

∫

A
dri g(ri)

∫ t2

t1

dτK̃(r, ri, t+ τ)

∫

A
dr′K∗(ri, r′, τ)ψ∗p0

(r′), (5.25)

where K̃(r, ri, t+τ) refers to the propagator in the perturbed system. For this focalization,
we take the overlap with the initial state as

m(t1, t2) =

∫

A
dr ψp0(r)Fp0(r, 0) =

∫ t2

t1

dτ

∫

A
dri g(ri)ϕ(ri, τ)ψ∗(ri, τ).

Here, we use the ergodic hypothesis in order to perform the integral over ri and obtain

m(t1, t2) ' ANA
∫ t2

t1

dτ m(τ), (5.26)
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where, as before, we assumed reciprocity in the backward propagator and

m(τ) =

∫

A
dri ϕ(ri, τ)ψ∗(ri, τ), (5.27)

is the Loschmidt echo amplitude that describes the overlap between the evolution ψ(ri, τ)
in the recording stage, governed by a Hamiltonian H, and the emission

ϕ(ri, τ) =

∫

A
dr′K̃(ri, r

′, τ)ψp0(r′), (5.28)

that takes place in a slightly different Hamiltonian H̃.
Within the semiclassical perspective, the effect of the perturbation H̃ − H can be

accounted by affecting the contribution of each trajectory s with an additional factor
〈exp [i∆Ss/~]〉, where ∆Ss represents the action difference for traveling along s under each
of the Hamiltonians. The angular brackets represent an average over the perturbation.
Taking the accumulated action as a Gaussian random variable, the previous average can
be expressed as

〈exp [i∆Ss/~]〉 = exp
[− 〈∆S2

s

〉
/2~2

]
= exp[−Lŝ/2l̃], (5.29)

with l̃ the effective elastic mean-free-path, i.e. the characteristic length traveled for the
particle without feel the perturbation

l̃ = ~2v2
0

(∫

A
dqC(q)

)−1

. (5.30)

Here, v0 is the the mean velocity and C(q) the correlation function describing the disor-
der that depends on the kind of perturbation chosen. A particular choice is the quenched
disorder model [JPa01] of N fictitious static impurities placed at positions Rα and char-
acterized by the correlation lenght ξ as

V (r) =
N∑
α=1

uα
2πξ2

exp

[
− 1

2ξ2
(r−Rα)2

]
. (5.31)

The strenght uα obeys 〈uαuβ〉 = u2δαβ and for this case, the correlation function reads

C(|r− r′|) =
N∑
α=1

u2

4πξ2
exp

[
− 1

4ξ2
(r−Rα)2

]
. (5.32)

It is important to note here that the chosen perturbation presents a null trace, i.e. no
net energy is added to the unperturbed Hamiltonian. Therefore, the average writes

exp[−Lŝ/2l̃] = exp[−γτ 2/Lŝ], (5.33)
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where

γ =
1

2~2

∫

A
dqC(q), (5.34)

sets the strength of the perturbation and results independent of the trajectory.
By following the same arguments of Sec. 4.2, the diagonal approximation for the LE

amplitude leads

m(τ) =
1

(2π~)2

∫

A
dridr̄

∑

s(r̄,ri,τ)

Cs

〈
e

i
~∆Ss

〉
ρW (r̄,ps). (5.35)

Here, we consider an initial Gaussian wave packet centered in r0 and calculate the cor-
responding Wigner function as in Eq. (5.15). Furthermore, we take the stability factors
and the sum rule for a close system where ξ = 0 and perform the ri and r̄ integrals under
the ergodic approach as in the previous section. Finally, the obtained amplitude writes
as the integral over lenghts

m(τ) =
2

(ντ)2

∫ ∞
Ld

dL L exp

[
−
(
L

ντ

)2

− γτ 2

L

]
, (5.36)

where ν = ~/mσ and the second term in the exponential comes from the average over the
perturbation. As a first approximation, since Ld/νt1 ¿ 1 we can neglect the τ -dependence
in the lower limit of the integral and thus

m(t1, t2) = 2
AN
A
∫ ∞

0

dη η exp
(−η2

) ∫ t2

t1

dτ exp

(
−γτ
νη

)
(5.37)

=
AN
A

2ν

γ

∫ ∞
0

dη η2 exp
(−η2

) [
exp

(
−γt1
νη

)
− exp

(
−γt2
νη

)]
, (5.38)

where we replaced η = L/ντ and exchanged the order of the L and τ integrals as compared
with the employed strategy of the unperturbed cases.

In the limit of γ → 0 we trivially recover the unpertubed focalization of Eq. (4.24).
The characteristic time defined by the perturbation is τ̃ = ν/

√
πγ. For very weak pertur-

bations such a time is larger than the maximum recording time, and we can expand the
exponentials as

exp

(
−γLi
ν2η

)
' 1− ti

νη
γ +

1

2!

(
ti
νη

)2

γ2, (5.39)

and readily obtain

m(t1, t2) =
AN
A ∆T

(
1− t̄

τ̃

)
for t2 ¿ τ̃ . (5.40)

The previous approximation is no longer valid for larger perturbations, but if we stay in
the regime where the emission interval is small compared with τ̃ , we can assume that the
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5.2. Focalization and the Loschmidt Echo

contributions of all trajectories are affected by almost the same reduction factor. Hence,
we arrive to a Fermi golden rule regime where

m(t1, t2) =
AN
A ∆T exp (−t̄/τ̃) for ∆T ¿ τ̃ . (5.41)

When the perturbation is strong enough to differentiate trajectories in the recording in-
terval, the focalization will be dominated by the smallest time t1, and we lose the propor-
tionality between the refocused signal and the emission interval. Writing exp [−γt1/ην]
as a Gaussian integral over the auxiliar variable ρ, we can cast the t1-dependent contri-
bution in the last term of Eq. (5.38) and follow the notes on the Appendix C that give a
focalization that can also be seen as a cumulative semiclassical regime

m(t1, t2) =
AN
A τ̃ c1 exp

(
−c2

t1
τ̃

)
for t2 > τ̃, (5.42)

where the numerical constants take the values c1 ' 1.47 and c2 ' 0.46.
For current experimental setups, the FGR regime of Eq. (5.41) is the most relevant

one. In this case, the exponential suppression of the focalized signal appears as a strin-
gent limitation. Depending on the model chosen for the perturbation, the characteristic
time τ̃ might be quite different. In a Lorentz gas [CPW02, CPJ04] one might choose a
perturbation represented by a mass distortion. In this case, the x and y components in
the mass tensor of the particle is slightly modified according to

mxx → m(1 + α), myy → m

1 + α
. (5.43)

This perturbation acts on the kinetic part of the Hamiltonian

Σ(α) =
α

2m

(
p2
y − p2

x

)
, (5.44)

and, as the quenched disorder model, also presents a null trace. Because this pertur-
bation is nonrandom, this condition is essential so that the effect of the perturbation
averages to zero by the underlying chaotic dynamics. The resulting fluctuation in the
phase determines the perturbation mean-free-path

l̃ =
4~2

m2v2
0l

1

α2
, (5.45)

where l ∝ λ−1 is the elastic mean-free-path given by the unperturbed Hamiltonian and
decreases as we increase the Lyapunov exponent of the system. Here, the characteristic
decay given by the Fermi golden rule results

1

τ̃
= α2

(
mv2

0

2~

)2

τ0. (5.46)
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Chapter 5. Irreversible processes and the time reversal focusing

with τ0 = l/v0 the time between collisions (bounces) in the unperturbed system and
hence τ̃ ∝ λ. In this case, one could imagine this as a form of the Quantum Zeno effect,
where the phase difference produced by the perturbation only accumulates along the
trajectory between two collisions. Hence, more chaos implies shorter collision times and
the characteristic decay decreases. This counterintuitive result states that the focalization
stability increases with the degree of chaos.

In the numerical evaluation of the focalization signal in terms of the Loschmidt echo
amplitude (LE), we compute both the forward and backward evolutions of the whole
system during a period tR. By considering the initial time fixed at the origin (t1 = 0)
and taking t2 = t, the focalization m(0, t) is then calculated as the integral between 0 and
t of the overlap between both evolutions, i.e. the time integral of the LE. We compare
this with the corresponding focalization obtained from the Lanczos-Trotter method of
Sec. 4.6, where the detected wave at the transducer site is injected during the emission
interval ∆T = t− 0.
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Figure 5.2: Focalization functions (circles) and the rescaled Loschmidt echo (squares)
amplitude as a function of time for two different values of the perturbation.

As we show in Fig. 5.2, the focalization signal and the rescaled time integral of the LE
(see Eq. (5.26)) are contrasted for several values of t. Here, the system consists of a quarter
of Bunimovich stadium and the chosen perturbation is a distortion on the mass tensor. For
the unperturbed case, the focalization (open circles) and the LE (black circles) manifest
the expected linear scaling with ∆T of Eq. (4.24). For the perturbed case with α = 0.003,
the focalization (open squares) and the LE (black squares) no longer grow linearly and
follow the time regimes discussed above. In both cases, the agreement between this two
quantities highlights that the focalization does not depend on the transducer location and
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5.2. Focalization and the Loschmidt Echo

can be faithfully reproduced through the time integral LE.
As pointed out in Ref. [CLP06], the fluctuations that occur in the action integral

along a classical trajectory can be assumed as self-averaged due to the ergodic nature of
the unperturbed Hamiltonian. Hence, the generic properties of the LE amplitude does
not change significatively with the kind of perturbation and we can get a qualitative
estimation of the time regimes in the focalization.
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Figure 5.3: Rescaled focalization as a function of the recording interval for different
strenghts in the perturbation. Left panel: numerical results for α from 0 to 0.01 in steps
of ∆α = 0.001. Right panel: numerical integration of Eq. (5.38) for some representative
values of γ.

In Fig. 5.3 we show the resulting focalization for several values of the perturbation. The
distortion in the mass tensor, and consequently the variation in the kinetic energy of the
particle, can be numerically represented by a smooth modification between the verticals
and horizontal hoppings. In this example, we use as initial state a Gaussian wave packet
centered at some arbitrary point r0, whose momentum p0 points in all possible directions
according to

ψp0(r) =
1√
πσ

exp

[
−(r− r0)2

2σ2

] ∫ 2π

0

dϕ

2π
exp

[
i

~
p0 |r− r0| cosϕ

]
. (5.47)

By using the Jacobi-Anger expansion

eiz cosϕ = J0(z) + 2
∞∑
n=1

inJn(z) cos(nϕ), (5.48)

with Jn(z) the n-th order Bessel function, the above integral over angles yields

ψp0(r) =
1√
πσ

exp

[
−(r− r0)2

2σ2

]
J0

(
p0 |r− r0|

~

)
. (5.49)
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Chapter 5. Irreversible processes and the time reversal focusing

This last may be an interesting choice since this initial state preserves the time-reversal
symmetry and, simultaneously, it contains finite value in the momentum.

According to the left panel of the figure, the focalization grows almost linearly in a
time scale that is very small as compared with τ̃ . Afterwards, there is a clear attenuation
that follows the FGR of Eq. (5.41) and it finally arrives to a “fluctuating” region around a
mean value that depends on the strenght of the perturbation. The analogous focalization
is depicted in the right panel for some representative values of γ through the numeri-
cal evaluation of Eq. (5.38). Of course, the comparison between the numerical results
(left panel) and Eq. (5.38) (right panel) is only qualitative since the considered pertur-
bation is not the same . In turn, when considering strong perturbations, the diagonal
approximation may no longer fit and higher order corrections should be included.

5.3 Summary

In summary, we evaluated the stability of the focalization signal against irreversibility
processes for two different situations: the open chaotic cavity, where the decay in the
nonescape probability may be interpreted as that produced by a non Hermitian perturba-
tion; and the closed chaotic system, where the emission stage was performed in a slightly
perturbed Hamiltonian with respect to that of the registration stage.

When considering an open cavity, the focalization constitutes a time integral of the
nonescape probability, that appears as the key tool in the assesment of the decaying ex-
citations. Working under the semiclassical approach, we evaluated such quantity in the
diagonal approximation leading to a form of Fermi golden rule. This probability shown to
decay exponentially with the classical escape rate 1/τd, limiting the focalization intensity.
Numerical results showed a good agreement with the theory for those times in the regis-
tration and emission stages where the norm of the wave packet remains almost constant.
For larger times, additional terms in the semiclassical expansion should be included in
order to describe the attenuation in the decay. Among them, we recall to those waves
returning to the cavity from the environment as well weak-localization type mechanisms
related to pairs of correlated trajectories not included in the diagonal approximation.

On the other hand, we studied the stability in the focalization following the strategy
popularized by the Loschmidt echo (hasty daemon), i.e. considering that the recording
and emission phases are governed by slightly different Hamiltonians. As perturbation we
choose the quenched disorder model, consisting of a null trace potential of impurities ran-
domly located around the cavity. For this case, the focalization showed two time regimes
depending on the strength of the perturbation and the center of the emission interval. For
weak perturbations and periods of emission short enough so that the contributing trajec-
tories are affected for the same reduction factor (i.e. ∆T ¿ τ̃ , with τ̃ the characteristic
time of the perturbation), it appears a Fermi golden rule that yields the attenuation in the
focalization. As shown in Eq. (5.41), the FGR maintains the scaling of the focalization
with the emission interval as in the unpertubed cases of Chapter 4. When the perturba-
tion is strong enough to differentiate trajectories in the emission interval, the last regime
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5.3. Summary

is lost and the focalization will only depend on the initial recording time. Among these
regimes, the FGR regime appears as the one related with the typical TRM experiments.
In particular, previous work on the subject has shown that this regime also describes the
LE amplitude (and hence the focalization) in a perturbation consisting of a distortion
of the mass tensor [CLP06]. As a consequence, we obtained an increasing stability in
the focalization against the perturbation with the degree of chaos in the system. This
counterintuitive result may represent a key point in the experimental applications of the
TRM in chaotic or inhomogeneous systems.
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Chapter 6

Conclusions

In this thesis we addressed, in a completely new perspective, the time reversal mirror
(TRM) procedure, where escaping waves are recorded as they cross the frontier between
the cavity and a propagating region and then re-emitted to achieve time reversal. This
consists in proposing the time reversed function inside the cavity as the target function
of the injection process. This inverse time scattering approach led to the development of
the perfect inverse filter (PIF), a prescription for processing the recorded information that
compensates any feedback and ensures the exact time reversal of the dynamics of acoustic
and quantum waves. We have also developed a novel strategy, based in the wave-particle
duality intrisic in a linear wave equation, to analyze the dynamical stability of the TRM
against imperfections in the protocol and perturbations in the evolution operator.

In the first part of the thesis, we developed the PIF procedure for quantum waves in
the discrete form of the Schrödinger equation. This particular choice of the system gave
us a natural separation between the region where one attempts to perform the reversal
(the cavity) and the “uncontrolled” outer region that acts as a sort of environment. At the
same time, the discrete representation of the Dyson equation yields a non-perturbative
connection between the independent solutions in both regions. This provides the precise
injection function that produces the targeted dynamics inside the cavity. The PIF pre-
scription appears as a filter applied to the TRM that accounts for the available information
on the dynamics. On the one hand, when the initial excitation arrives from the outer re-
gion and one is able to detect the complete propagation of the wave packet as it goes in
and out through the boundaries of the system, the PIF filter accounts for the feedback of
the system. The PIF is accomplished in the energy/frequency representation through the
multiplication by the inverse of the Green’s function at the location of the transducer. On
the other hand, if the recording starts when the excitation is already inside the cavity, we
obtained a simpler prescription. In this case, the PIF became independent from the inter-
nal scattering and only accounts for the group velocity of the waves that escape towards
the outer region. The key in this last case is that one can separate the incoming and out-
going components of the wave packet. Since this is often the situation in linear systems,
this result is very promisory. It can also hold for situations when the separation cannot
be fulfilled exactly. The PIF prescription could be used as an analytical tool to design
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the generation of specific wave packet like excitations, thus providing another strategy
for coherent control. In particular, it could be applied for the development of quantum
bazookas shutting wave packet excitations. Fields of prospective implementation include
the local generation [ZME92] of target spin-wave packets in chains of interacting spins
[MBS97]. In nanoelectromechanical structures [ABS02, SRo05], where a vibrational wave
is created by coupling the nanocantilever to a Cooper-pair box, the PIF prescription could
allow the design of particular superposition states in the resonator. Also, in Bose-Einstein
condensates, where the atoms are confined in an optical lattice [Chu02], the well-defined
set of quantum states might be described by a tight-binding model. Thus, the control of
macroscopic wavefunctions would benefit from a simple and consistent PIF prescription
for the local generation of any targeted excitation.

In Chapter 3, we developed the PIF protocol for acoustic waves. Again, this was
possible because we resorted to the discrete form of the wave equation represented by an
harmonic lattice of coupled oscillators. Through a detailed analysis of the propagators
describing the response of the system due to impulsive and displacive forces, we found
the connection between the quantum and classical Green’s functions. This enabled us
to inject instantaneous increments in either the displacements or velocities of the oscil-
lators at the frontier, obtaining the targeted evolution inside the cavity. After that, the
classical PIF was deduced through the Dyson equation connecting the two subspaces de-
limited by the transducer. Notably, the prescription resulted the same as that in the
quantum case, i.e. just determined by the group velocity. When the outer region, usu-
ally a waveguide, presents periodicity or scattering due to impurities, the PIF improves
the TRM because in both cases the group velocity is non-constant. In particular, the
prescription suggests that, in the continuum limit, the usual TRM experimental set-up
reaches the exact reversal whenever the outer region is free of inhomogeneities. Inspired
by the Trotter method implemented in the evaluation of the quantum PIF, we developed
a novel numerical method, the Pair Partitioning, that generates the time evolution prop-
agator by alternating the perfectly reversible evolution of pairs of coupled oscillators. We
also added a modification that enabled the description of the evolution in open systems
through the use of frictional forces near the boundaries of a finite system. We expect
that the computing power of the Pair Partitioning in multi-dimensional systems could be
further improved by applying this method in conjunction with the Lanczos algorithm (see
Sec. 4.6).

In general, the PIF results valid for the reversal of any scalar wave as long as they
satisfy a linear equation where different propagators can be described by the Green’s func-
tions. The basic ingredients apply to elastic or electromagnetic waves [MBB00] extending
the range of applicability of the concepts introduced here.

Although the implementation of a TRM in a quantum system is not a simple task,
at least some of the steps in our protocol could be implemented in pulsed NMR. This
technique already has the tools that enable to inject and detect locally a polarization
wave [MBS97]. In an ensemble of linear molecules, the interactions between nuclear spins
can be manipulated to obtain a polarization assimilable to the square modulus of a single-
particle wave function [PLU95] and constitutes a pseudo-pure state [DPL04]. Detection at
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each time involves repeated experiments where the polarization and its phase are obtained
from an ensemble measurement. In order to generate a local source/detector one resorts
to the interaction between different nuclei, which can be engineered at will, e.g. a 13C
acts as such probe for a labeled 1H [ZME92]. In fact, the group of Levstein and Pastawski
have been able to inject a wave packet in a 1H ring and to follow its dynamics detecting
simultaneously the amplitude and relative phase at the labeled 1H [LUP98]. This is a
double-slit like experiment that allows interferometry in the time domain [PUL96]. If
most of the polarization stays in the 13C, the small portion transferred to the proton
system is the one described by the theory above.

While a full implementation of the quantum TRM or PIF requires setting many im-
portant experimental details, every step towards that goal would have potential use in
spectral edition and quantum information processing. More immediately, classical wave
systems could benefit from our procedures which can be incorporated in a straightforward
manner.

In the second part of this thesis, we evaluated the TRM procedure in a closed chaotic
cavity for small emission periods ∆T as compared to the complete recorded signal, which
the experiments have shown to provide a satisfactory time reversal. Under the semiclassi-
cal approximation, we described the focalization amplitude for times and positions close to
those where refocusing occurs. In agreement with the elastic waves experiments [DFi97],
we observed that the use of a single transducer is enough to perform a high-quality rever-
sion. Furthermore, this focalization has shown to be directly proportional to the emission
period and the number of transducers, and inversely proportional to the total area of the
cavity. Assuming an ergodic cavity, the information carried out by the detected signal
becomes “redundant”, meaning that the same focalization might be achieved, indepen-
dently of where the transducers are located or when the emission window is active. As we
can expect, this is not the case for cavities with integrable dynamics, where the classical
trajectories tend to be dominated by the recurrences of a few periodic orbits leading to
periods of “silence” with alternating bursts of signal during the registration. In conse-
quence, the signal may be tracked or not, depending on where the transducer is placed or
when it is active. At best, when some portion of the wave packet is detected, the resulting
focalization presents low contrast.

In order to obtain a well resolved focalization, the recording time should increase
with the size of the cavity. In a numerical implementation in a system of N × N sites
this implies long computational times since it requires the computation of the complete
propagator involving O(N ×N) operations with the Trotter-Suzuki algorithm. To reduce
the time required to evaluate the fidelity of the time reversal focusing, we developed the
Lanczos-Trotter algorithm. This redefines a new basis through the repeated application
of the Hamiltonian over the initial state. This procedure collects relevant information
about the dynamics of the wave packet at the site of the transducer. Since the recording
stage starts and ends in times of the order of the mesoscopic echo, the truncation of the
Lanczos basis at the order N reproduces the signal in the transducer. In consequence,
the Lanczos-Trotter method improves the Trotter-Suzuki algorithm when considering the
TRM procedure for a single transducer. At the moment, the application of this method
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is restricted in systems presenting time-reversal symmetry. However, the generalization
of the Lanczos-Trotter to open systems seems possible by including an “escape region”
composed by complex site energies.

In Chapter 5, we analized the stability of the TRM procedure in a chaotic cavity
against external perturbations. We started considering that the cavity has a small opening
which allows the escape of the internal excitations towards the outside world, usually a
waveguide or a boundless system. This can be seen as a non-Hermitian perturbation acting
on both recording and emission stages. Under the ergodic hypothesis, the focalization
becomes independent from the position of the transducer and can be expressed as the
time integral of the nonescaping probability to find the excitation still confined inside the
cavity. We described this probability in the semiclassical approximation and obtained an
exponential decay regime when the number of contributing trajectories remain unaffected
by the opening. In this case, the focalization intensity preserves the linear scaling with
the emission interval but presents a natural attenuation given by those non-returning
trajectories that escaped at the recording time. As we increase the recording and emission
intervals, a cumulative semiclassic regime appears. At this point, the focalization grows
until a stationary value which is reached in a time characterized by the decay of the wave
packet. Here, the number of contributing trajectories drops steadily and the linear scaling
with the emission interval is lost.

Inspired by the Loschmidt echo strategy, we evaluated the TRM procedure in a closed
chaotic cavity under an external Hermitian perturbation introduced between the record-
ing and emission stages. For this case, the ergodic hypothesis provided the description
of the focalization amplitude as the time integral of the Loschmidt echo amplitude dur-
ing the emission period. We considered a null trace potential consisting of a random
arrengement of “Gaussian” impurities and followed the same semiclassical arguments as
in the open cavity. Depending on the strenght of the perturbation, we found two regimes
in the focalization amplitude. For weak perturbations and short emission periods, the
contributing trajectories “feel” the perturbation for almost the same period and the fo-
calization presents a Fermi golden rule regime. In this case, the scaling with the emission
period is still linear and the decay time of the attenuation goes inversely proportional to
the strenght of the perturbation. For strong perturbations, the contributing trajectories
separate according to the traveling time and the focalization shows a cumulative semiclas-
sical regime where refocusing no longer depends neither on the width nor on the center
of the emission period. The typical TRM experiments are in the FGR regime, since the
recording and emission periods are usually short as compared with the characteristic time
of the perturbation. In agreement with the Loschmidt echo regimes of Ref. [CPJ04],
the FGR has a characteristic decay time proportional to the Lyapunov exponent. This
counterintuitive result, a form of the Quantum Zeno effect, results in a more stable TRM
with increasing the randomness or chaos. Thus, this is a leap towards the understanding
of why chaos enhances the robustness of the TRM which deserves further numerical and
experimental studies.

In summary, the analytical and numerical results of this thesis provide new insights
that should lead to improved TRM implementations in acoustics and electromagnetic
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communications and also could open new possibilities in the control of quantum excita-
tions. The potential of the PIF strategy may result of interest in ultra-cold atoms and
quantum information fields, requiring the coherent control of specific target excitations of
well-defined quantum states. Furthermore, we presented a novel analysis of the stability
of TRM against external perturbations. In the field of quantum chaos, the similarity ob-
served between both hasty and stubborn daemons gives rise to a natural question: Why
the TRM experiments does not seem to present a Lyapunov regime as those in the LE?
This question opens new opportunities for further analytical, numerical and experimental
studies.
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Appendix A

Calculus of Green’s functions
through decimation

A.1 Quantum Green’s functions

In this Appendix, we give a detailed description for the decimation process as a useful
technique in the calculation of the Green’s function Gs,s(ε) in the site basis. As shown in
Fig. A.1, we start with a one-dimensional system composed by 3 sites and we would like
to calculate the Green’s function of the transducer placed at the left of the chain, referred
as the site 1. Hence, the system’s Hamiltonian is represented by the tridiagonal matrix

H =




E1 V1,2 0
V2,1 E2 V2,3

0 V3,2 E3


 , (A.1)

and the corresponding Schrödinger equation writes according to (εI−H) |ψ〉 = 0, i.e.

(ε− E1)ψ1 − V1,2ψ2 = 0, (A.2)

(ε− E2)ψ2 − V2,1ψ1 − V2,3ψ3 = 0, (A.3)

(ε− E3)ψ3 − V3,2ψ2 = 0. (A.4)

The first step in order to reduce the number of sites in the system can be achieved by
computing the middle equation in terms of the last one. This yields,

(ε− Ẽ2)ψ2 − V2,1ψ1 = 0, (A.5)

that may be interpreted as the effective site 2 whose energy

Ẽ2 = E2 + V2,3
1

ε− E3

V3,2, (A.6)

carries the correction due to the presence of the site 3. The dynamical correction (ε−E3)−1

accounts for the Green’s function G
(0)
3,3(ε) of the uncoupled site 3. Reducing again, the
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resulting Schrödinger equation takes the following form

(ε− Ẽ1)ψ1 = 0, (A.7)

where

Ẽ1 = E1 + ΣR(ε) = E1 + V1,2
1

ε− E2 − V2,3
1

ε− E3

V2,1

V2,1, (A.8)

contains the self-energy correction ΣR(ε) given by the sites 2 and 3 respectively.

E
1
E
2

~
E
1

~
E
1
E
2
E
3

Figure A.1: Scheme of the decimation method. The effective energies Ẽi contains the
self-energy correction due to the decimated sites at the right side of the chain.

Now that we have decimated the 3 sites system into a single effective site, the Green’s
function is readily obtained by calculating

G1,1(ε) = (ε− Ẽ1)−1 =
1

ε− E1 − V1,2
1

ε− E2 − V2,3
1

ε− E3

V2,1

V2,1

. (A.9)

In a more general situation where the transducer is placed between the cavity and
the outer region, a decimation should be accounted at both sides of the s-site. For the
cavity, placed at the left of s, it is important to note that the number of sites is finite and
hence the self-energy correction Σin(ε) consist of a finite number of continued fractions.
On the other hand, when considering the outer region as an homogeneus chain where all
the energies and hoppings are Eo and V respectively, the correction to the self energy
corresponding to the n-site can be written in terms of the correction in the (n+ 1)-site as

Σ
(n)
out(ε) =

V 2

ε− Eo − Σ
(n+1)
out (ε)

. (A.10)

Hence, in the thermodynamic limit where the number of sites increases indefinitely, this
correction can be assumed the same as that given by the (n+ 1)-site. Therefore, this can
be represented through the recurrence

Σout(ε) =
V 2

ε− Eo − Σout(ε)
, (A.11)
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whose solution comes from the quadratic equation

Σ2
out(ε)− (ε− Eo) Σout(ε) + V 2 = 0, (A.12)

and the chosen branches are in agreement with the limit of the analytic continuation
ε→ ε+ iη of the retarded Green’s function in a finite system:

Σout(ε) = lim
η→0

lim
n→∞

V 2

ε+ iη − Eo − Σ
(n)
out(ε)

(A.13)

= ∆(ε)− iΓ(ε) (A.14)

with

∆(ε) =





ε−Eo

2
+
√(

ε−Eo

2

)2 − V 2 ε−Eo

2V
< −1

ε−Eo

2
|ε−Eo|

2V
≤ 1

ε−Eo

2
−
√(

ε−Eo

2

)2 − V 2 ε−Eo

2V
> 1

, (A.15)

and

Γ(ε) =

{ √
V 2 − ( ε−Eo

2

)2 |ε−Eo|
2V
≤ 1

0 |ε−Eo|
2V

> 1
. (A.16)

in agreement with Eqs.(2.70) and (2.71) from the text.
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Figure A.2: Corrections to the self energy (left) and the characteristic frequency (right)
due to the an open one-dimensional and semi-infinite chain. The real (black solid) and
imaginary (blue dotted) are plotted.

A.2 Classical Green’s functions

In the classical description of coupled harmonic oscillators, the same procedure can be
accomplished in the elements of resolvent matrix of Eq. (3.12). In such case, the displace-
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ments in the frequency domain for a chain of three coupled oscillators write

(ω2 − ω̃2
1)u1(ω) +

K1,2

m1

u2(ω) = 0, (A.17)

(ω2 − ω̃2
2)u2(ω) +

K1,2

m2

u1(ω) +
K2,3

m2

u3(ω) = 0, (A.18)

(ω2 − ω̃2
3)u3(ω) +

K2,3

m3

u2(ω) = 0. (A.19)

Therefore, we can decimate as before by including the third equation into the second one
(
ω2 − ω̃2

2 −
K2,3

m2

1

ω2 − ω̃2
3

K2,3

m3

)
u2(ω) +

K1,2

m2

u1(ω) = 0. (A.20)

Here, in addition to the mean-field or static frequency in ω̃2
2, it appears a dynamical

correction in the effective frequency due to the coupling with the third oscillator. If we
reduce again, the effective equation in the first oscillator would read

(ω2 − Ω2
1)u1(ω) = 0, (A.21)

with

Ω2
1 = ω2 − ω̃2

1 −
K1,2

m1

1

ω2 − ω̃2
2 − K2,3

m2

1

ω2 − ω̃2
3

K2,3

m3

K1,2

m2

. (A.22)

For the case of an open homogeneous chain, the correction Π(ω) to the characteristic
frequency obeys the same recurrence law than in the tight-binding case, i.e.

Π(ω) =
ω4

x

ω2 − 2ω2
x − Π(ω)

, (A.23)

where ω2
x = K/m is the exchange frequency. Thus, the solution Π(ω) = ∆(ω)− iωη(ω) is

obtained by chosing the branches as

∆(ω) =





ω2−2ω2
x

2
+ ω

2

√
ω2 − 4ω2

x ω < −2ωx
ω2−2ω2

x

2
|ω| ≤ 2ωx

ω2−2ω2
x

2
− ω

2

√
ω2 − 4ω2

x ω > 2ωx

(A.24)

and

η(ω) =

{
1
2

√
4ω2

x − ω2 |ω| ≤ 2ωx

0 |ω| > 2ωx
, (A.25)

that yields the relation with the group velocity as

vg(ω) = c

√
1−

(
ω

2ωx

)2

= aη(ω). (A.26)

in agreement with Eq. (3.7) of the text.
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Appendix B

Quantum-classical analogy in
discrete systems

In this appendix, we show some similarities in the algebraic structure of the discrete
quantum and classical wave equations given in Eqs. (2.6) and (3.12) respectively. We
introduce a tight-binding model in the quantum domain enabling the description of the
classical equation and obtain the same dynamics as that given by the harmonic chains.
In this model, we re-adapt the hoppings and number of sites of the quantum system in
order to account for the elastic couplings and the natural frequencies in the corresponding
harmonic system.

ψ1 ψ3 ψ5 ψ7

ψ2 ψ4 ψ6

ϕ1 ϕ3 ϕ5 ϕ7
E
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E
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E
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E
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V
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V
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V
3,4

V
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V
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V
5,4

V
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V
6,5

V
6,7

V
7,6

Figure B.1: Tight-binding analogy with the classical chain of coupled harmonic oscillators.

We show in Fig. B.1 as the gray sites those who will compute the movement of the
i-th oscillator due to an initial displacement following the Eq. (3.18). They are connected
by the “auxiliary” white sites representing the harmonic couplings given by the springs.
The natural frequency ωi = Ei/~ is obtained through the vertical hopping that links the
corresponding auxiliary state ϕi(ε) and the horizontal hoppings yield the elastic coupling
between the other oscillators. Under these assumptions, the Schrödinger equation for the
gray sites takes the form

εψi(ε)− Eiϕi(ε)− Vi,i−1ψi−1(ε)− Vi,i+1ψi+1(ε) = 0, (B.1)
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with the auxiliary states satisfying

εϕi(ε)− Eiψi(ε) = 0, (B.2)

εψi−1(ε)− Vi−1,i−2ψi−2(ε)− Vi−1,iψi(ε) = 0, (B.3)

εψi+1(ε)− Vi+1,iψi(ε)− Vi+1,i+2ψi+2(ε) = 0. (B.4)

Notice that the subspace formed by the gray states is a suitable representation of the
displacements amplitudes since they only will take real values (the imaginary components
will remain as zero). As we can observe, all the site energies were set as exact zeros. In
consequence, the expansion in the the time evolution propagator

|ψ(t)〉 = exp

(
− i

~
Ht
)
|ψ(0)〉 (B.5)

=
∞∑
n=0

(−1)n

(2n)!

(
t

~

)2n

H2n |ψ(0)〉 − i
∞∑
n=0

(−1)n

(2n+1)!

(
t

~

)2n+1

H2n+1 |ψ(0)〉 , (B.6)

and the tridiagonal character of the Hamiltonian yields

[
H2n

]
i,j

= 0, i and j with different parity, (B.7)
[
H2n+1

]
i,j

= 0, i and j with same parity. (B.8)

Furthermore, the non-zero values are real numbers since we assume that the hoppings
are real. Hence, if the initial state is a linear combination of real components in the gray
sites, the time evolution in these sites will contain only the H2n expansion and therefore
they will not change their phase.

By using a decimation procedure in the auxiliary white sites, one can reduce the
Eqs. (B.2)-(B.4) considering only the wave functions that refers to the displacements of
the oscillators. Therefore, the effective energies and hoppings are

(
ε− Ẽ2

i

ε

)
ψi(ε)− Vi,i−1Vi−1,i−2

ε
ψi−2(ε)− Vi,i+1Vi+1,i+2

ε
ψi+2(ε) = 0, (B.9)

where Ẽ2
i = Vi,i−1Vi−1,i + E2

i + Vi,i+1Vi+1,i is the “effective” energy at the i-site. Since
the exchange frequencies in the off-diagonal components of Eq. (3.12) appear as positive
and the correction terms in the diagonal are just the exchange frequencies, the following
restriction

Vi,i−1Vi−1,i = −Vi,i−1Vi−1,i−2, (B.10)

Vi,i+1Vi+1,i = −Vi,i+1Vi+1,i+2. (B.11)

is satisfied whenever Vi−1,i−2 = −Vi−1,i and Vi+1,i+2 = −Vi+1,i. As compared with the
classical case, these terms can be chosen in order to coincide with the exchange frequencies
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as

Vi,i−1Vi−1,i

~2
=

Ki−2,i

mi

, (B.12)

Vi,i+1Vi+1,i

~2
=

Ki,i+2

mi

. (B.13)

It is important to notice that such replacement, in the inhomogeneous case, breaks
the reciprocity property of the propagators, i.e. Gi,j(t) 6= Gj,i(t). With this in mind, the
resulting Green’s function matrix acquires the same structure than in the classical case
and it allows the representation of the displacements in terms of the wave amplitude of
the TB model.

In order to test this analogy, we solve the evolution of a single-mode Helmholtz res-
onator composed by a heavy mass m0 and a natural frequency ω0, and located at the site
c. This oscillator is coupled to two homogeneous harmonic chains of lighter masses m
acting as the “environment” where all the excitation decays. In the tight-binding model,
the relations imposed by Eqs. (B.10)-(B.13) are satisfied by setting the hoppings as

Vc,c−1 = −~ m
m0

√
K

m
→ Vc−1,c = −~

√
K

m
, (B.14)

Vc,c+1 = ~
√
K

m
→ Vc+1,c = ~

m

m0

√
K

m
. (B.15)

We start with an initial displacive force applied in the resonator and observe the
displacement in several sites of the chain. The quantum evolution is computed through
the Trotter-Suzuki algorithm and the classical propagation is calculated using the Pair
Partitioning method discussed in Sec. 3.3. According to Fig. B.2, a complete agreement
between the two evolutions is observed.
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Figure B.2: Numerical test for a Helmholtz resonator with m0 = 4m and ω0 = 1.5ωx

located in x = 50a. The normalized quantum evolutions (blue dotted) and the classical
displacements (black solid) are superposed.

Although the classical dynamics is obtained from the Trotter-Suzuki method with high
accuracy, is important to take this result carefully: this comparison only concerns to the
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algebraic properties of the Green’s functions and hence, it does not involve any physical
interpretation beyond the formal description of the propagators.
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Appendix C

Calculus of integral identities

C.1 Scaling of the focalization

In this appendix we calculate the integral over angles

I3 =

∫ 2π

0

dϕ

2π
K cosϕeK

2 cos2 ϕerf (K cosϕ) , (C.1)

presented in Eq. (4.37) of the text. The Taylor expansion in the corresponding integrand
gives

eK
2 cos2 ϕ =

∞∑
n=0

(K cosϕ)2n

n!
, (C.2)

for the exponential and

erf (K cosϕ) =
2√
π

∫ K cosϕ

0

e−x
2

dx (C.3)

=
2√
π

∞∑
m=0

(−1)m

m!

∫ K cosϕ

0

x2mdx (C.4)

=
2√
π

∞∑
m=0

(−1)m (K cosϕ)2m+1

m!(2m+ 1)
, (C.5)

the error function. Hence, the corresponding integral leads to

I3 =
1

π3/2

∞∑
n=0

∞∑
m=0

(−1)m

n!m!(2m+ 1)

∫ 2π

0

dϕ [K cosϕ]2(n+m+1) . (C.6)

Performing the replacement l = n+m, we write n in terms of l and

I3 =
1

π3/2

∞∑

l=0

1

l!

l∑
m=0

(
l
m

)
(−1)m

2m+ 1

∫ 2π

0

dϕ [K cosϕ]2(l+1) . (C.7)
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The sum over m can be obtained from the identity

l∑
m=0

(
l
m

)
(−1)m

2m+ 1
=

∫ 1

0

(1− x2)ldx =

∫ π/2

0

dφ cos2l+1 φ =

√
π

2

Γ(l + 1)

Γ(l + 3/2)
. (C.8)

On the other hand, the remaining integral takes the value
∫ 2π

0

dϕ cos2(l+1) ϕ = 2
√
π

Γ(l + 3/2)

Γ(l + 2)
, (C.9)

yielding

I3 =
1√
π

∞∑

l=0

K2(l+1)

l!

Γ(l + 1)

Γ(l + 2)
=

1√
π

∞∑

l=0

K2(l+1)

(l + 1)!
=

1√
π

(
eK

2 − 1
)
, (C.10)

in agreement with Eq. (4.37) of the text.

C.2 Focalization in perturbed Hamiltonians

Here we calculate the integral from Eq. (5.38) in the approximation for strong perturba-
tions where the dominant term is

I =

∫ ∞
0

dη η2 exp
(−η2

)
exp

(
−γt1
νη

)
. (C.11)

By writing the last exponential as the following Gaussian integral

exp

(
−γt1
νη

)
=

√
η

π

∫ ∞
−∞

dρ exp

(
−ηρ2 + 2i

√
γt1
ν
ρ

)
, (C.12)

we can include this

I =
1√
π

∫ ∞
0

dη η5/2

∫ ∞
−∞

dρ exp

(
−η2 − ηρ2 + 2i

√
γt1
ν
ρ

)
(C.13)

=
1√
π

∫ ∞
−∞

dρ exp

(
2i

√
γt1
ν
ρ

)
F (ρ), (C.14)

with

F (ρ) =

∫ ∞
0

dη η5/2 exp
(−η2 − ηρ2

)
. (C.15)

In the Fig C.1 we plot the integrand of F (ρ) as a function of ρ and η.
As we can observe, the function diminishes for values thar are far from the origin at

ρ = 0. Hence, we can take the quadratic form by expanding F (ρ) up to the second order
where

F (0) = F0 =

∫ ∞
0

dη η5/2 exp
(−η2

)
=

1

2
Γ

(
7

4

)
, (C.16)
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Figure C.1: Integrand of F (ρ) as a function of ρ and the integral variable η. Because of
the quadratic dependence of ρ, this function decreases from the center at ρ = 0.

and
1

2!

d2

dρ2
F (ρ)

∣∣∣∣
ρ=0

= −
∫ ∞

0

dη η7/2 exp
(−η2

)
= −1

2
Γ

(
9

4

)
= −c. (C.17)

Since the decrease in ρ is fast we can approximate F (ρ) by the Gaussian

F (ρ) ' F0 − cρ2 ' F0 exp

(
− c

F0

ρ2

)
, (C.18)

that yields the form

I =
F0√
π

∫ ∞
−∞

dρ exp

(
− c

F0

ρ2 + 2i

√
γt1
ν
ρ

)
(C.19)

=
F

3/2
0

c1/2
exp

(
−F0

c

γt1
ν

)
. (C.20)

Therefore, the obtained focalization writes

m(t1, t2) =
AN
A τ̃ 2

√
π
F

3/2
0

c1/2
exp

(
− F0√

πc

t1
τ̃

)
(C.21)

=
AN
A τ̃ c1 exp

(
−c2

t1
τ̃

)
, (C.22)

107



Chapter C. Calculus of integral identities

where

c1 =
2
√
πF

3/2
0

c1/2
' 1.467158305, (C.23)

c2 =
F0√
πc
' 0.4576558577. (C.24)
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