

Principios Básicos de RMN en sólidos destinado a usuarios

Gustavo Monti

Block diagrama of a traditional NMR spectrometer.

- 1 probe,
- 2 signal preamplifier,
- 3 transmitter and power amplifier,
- 4 receptor,
- 5 detector (here the RF signal from the nuclei is converted into audio frequency signal),
- 6 analog to digital converter.

NMR spectrometers for solids are also characterized by the following specifications:

superconductors magnets have of 89 mm inner hole diameter (large diameter) to accommodate the probe which houses the sample. Probes are equipped with MAS to obtain high resolution spectra. RF amplifiers have high power to irradiate wide lines for decoupling. Pneumatic drives are used to rotate the samples.

4.7 T superconducting magnet, equivalent to a frequency of 300 MHz for protons.

CPMAS probe, 7 mm rotor, coil and its stator.

1000 MHz (1 GHz) magnet

Nuclear Magnetic Resonance Spectrometer, Bruker Avance II

- 1) Computer
- 2) frequency generator, transmission and reception
- 3) High Power Amplifier
- 4) pneumatic unit sample rotation
- 5) Temperature control
- 6) Control of magnetic field external homogenization coils

Setup procedures for

- magic angle adjustment
- probe shimming
- cross polarization: Hartmann-Hahn match
- decoupling considerations

MAS = Magic Angle Spinning ⇒ line narrowing

 $(3\cos^2\theta - 1) \stackrel{!}{=} 0 \Leftrightarrow \theta = 54.7^\circ$

rare spins (e. g. 13 C)

 $CP = Cross Polarization \Rightarrow signal enhancement: \gamma_{I}/\gamma_{S}$ ${}^{1}H \Rightarrow {}^{13}C : x 4$ ${}^{1}H \Rightarrow {}^{15}N : x 10$

Requirements for setup sample:

- sensitive to angle setting:
 - large interaction to be averaged by MAS
 - narrow lines achievable
 - more sensitive than samples of interest
- •easy to observe:
 - large signal
 - at desired observe frequency

Standard setup sample (¹³C work): KBr with ⁷⁹Br detection

- criterion: spinning sidebands
- sensitive to magic angle due to broad (MHz) quadrupolar interaction
- narrow lines

•close to ¹³C frequency (300 MHz spectrometer: 75.16 MHz vs. 75.43 MHz), no change in routing, filters, preamplifier, probe range etc. required

•good S/N (single scan)

Probe Shimming

Some hints:

•shimming is done on FID or spectrum (no lock used)

•usually requirements are less demanding as compared to liquids (e. g. ${}^{13}C$: < 10 Hz)

•MAS on axis and off axis shims are a combination of standard on axis ($z, z^2, ...$) and off axis (x, y, ...) shims

•at high spinning speeds: MAS off axis shims less important

relation of MAS (tilted) and laboratory frame shims

$$B_{z^{2}}^{\text{tilt}} = B_{(x^{2}-y^{2})}^{\text{lab}} - 2\sqrt{2}B_{zx}^{\text{lab}}$$
second order
$$B_{zx}^{\text{tilt}} = -\frac{1}{3}B_{zx}^{\text{lab}} + \frac{\sqrt{2}}{6}B_{z^{2}}^{\text{lab}} - \frac{\sqrt{2}}{6}B_{(x^{2}-y^{2})}^{\text{lab}}$$

$$B_{zy}^{\text{tilt}} = \frac{1}{\sqrt{3}}B_{zy}^{\text{lab}} - \frac{\sqrt{2}}{\sqrt{3}}B_{xy}^{\text{lab}}$$
:

A. Sodickson and D. G. Cory, J. Magn. Reso. 128, 87 (1997)

Cross Polarization - Basic Principles

energy level matching: Hartmann-Hahn matching

Basic CP(MAS) Pulse Sequence

Cross Polarization

What can be achieved:

signal enhancement by polarization transfer:

nucleus	natural	max. enhancement		
	abundance	factor		
^{13}C	1.11 %	4		
15 N	0.37 %	10		
²⁹ Si	4.70 %	5		
³¹ P	100 %	2.5		

$$\frac{\gamma_{\rm I}}{\gamma_{\rm S}} \cdot \frac{1}{1+\varepsilon}$$

faster repetition:

recycle delay ~ 5 $T_{1,1_{\text{H}}}$ usually $T_{1,1_{\text{H}}} << T_{1,13_{\text{C}}}(T_{1,15_{\text{N}}}...)$

Cross polarisation: criteria

robustness:

width of Hartmann-Hahn-condition dependence on rotation frequency

 $\gamma_1 B_1 = \gamma_2 B_1 + n \cdot 2\pi v_{rot}$

efficiency

$$f_{\rm max} = \frac{\gamma_{\rm H}}{\gamma_{\rm X}}$$

recycle delay is now determined by ${}^{1}H T_{1}$ BUT: consider probe duty cycle!!

¹³C CPMAS Setup Using Glycine

CPMAS spectrum of glycine (5 kHz spinning speed)

Hartmann-Hahn matching profiles

Glycine ¹³C signal amplitudes as function of ¹H RF field ¹³C RF field constant at 45 kHz using square pulses for CP

Hartmann-Hahn matching profiles

What is the reason for these intensity modulations? The homonuclear proton-proton dipole coupling is modulated by the spin rate!

Ramped (Variable Amplitude)

Cross Polarization

Hartmann-Hahn matching profiles

Glycine ¹³C signal amplitudes as function of ¹H RF field ¹³C RF field constant at 45 kHz using ramp pulse for CP from 100% to 50% amplitude

VACP: possible problems

Actual transfer occurs during precise match to

spinning sideband!

-transfer does not occur during the whole pulse

-proton spin lock field not at constant high level, proton $T_{1\rho}$ may be shortened

Optimum setup: Flat (10)% ramp over first sideband to higher power, just to compensate for misset and drift. However: Must be optimised for spin rate!

Cross Polarization Dynamics

contact time, practical considerations for ¹³C

- •short T_{IS} (~500 ms): directly attached protons (-CH₃, -CH₂-, >CH-)
- long T_{IS} (>1 2 ms): quaternary carbons
 (>C<, -COO-, substituted aromatic systems, ...), high mobility
- •short $T_{1\rho}$: paramagnetic systems/impurities (e.g. in coal), high mobility

TPPM decoupling

TPPM = <u>T</u>wo <u>P</u>ulse <u>P</u>hase <u>M</u>odulation

pulse duration: $\tau_p \approx \tau_p - \varepsilon$: $\varepsilon \approx 0 - 0.6 \ \mu$ s, to be optimised! phase step: $\varphi \approx 15^\circ$, optimise, if needed!

TPPM: optimisation of τ_{p}

 C_a signal in glycine-1,2-¹³C-¹⁵N, v_{rot} = 30 kHz, φ = 15°

optimum pulse length: $\tau_p = 2.9 \ \mu s$, ($\tau_{\Box} = 3.2 \ \mu s$)

basic cycle: $Q = \phi \phi' \phi'' \phi''' \dots = 10^{\circ} -10^{\circ} 15^{\circ} -15^{\circ} 20^{\circ} -20^{\circ} 15^{\circ} -15^{\circ}$ $Q = -\phi -\phi' -\phi'' -\phi''' \dots = -10^{\circ} 10^{\circ} -15^{\circ} 15^{\circ} -20^{\circ} 20^{\circ} -15^{\circ} 15^{\circ}$

Decoupling bandwidth - comparison

Line width of C_{α} in Glycine at $v_{rot} = 5$ kHz, 400 MHz

Decoupling bandwidth - comparison

Line width of C_{α} in Glycine at $v_{rot} = 5$ kHz, 400 MHz

Residual line width

 ^{13}C CP spectra of cortisone acetate at ν_{dec} = 104 kHz and ν_{rot} = 11 kHz, 400 MHz

SPINAL 64 TPPM 15 CW

Residual line width

 ^{13}C CP spectra of starch at ν_{dec} = 104 kHz and ν_{rot} = 11 kHz, 400 MHz

SPINAL 64 TPPM 15

Cross Polarization for Various Nuclei

•standard: $I=1/2 \Rightarrow S=1/2$:

•most frequent:

 $I = {}^{1}H \implies S = {}^{13}C, {}^{15}N, {}^{29}Si, {}^{31}P$

•less common, but worthwile:

 $I = {}^{1}H \implies S = {}^{77}Se, {}^{89}Y, {}^{113}Cd, {}^{119}Sn, {}^{129}Xe, {}^{195}Pt, {}^{199}Hg, {}^{207}Pb$

•fluorinated materials:

 $I = {}^{19}F \implies S = {}^{13}C, {}^{15}N, {}^{29}Si, {}^{31}P, \dots$

•low g nuclei (e. g. ¹⁵N): more X and/or less ¹H power

•quadrupolar nuclei: different story ...

15N CPMAS Setup with Glycine

CP throughout the periodic table

- Standard: I = $\frac{1}{2} \rightarrow S = \frac{1}{2}$
 - Most frequent:
 - I = ${}^{1}H \rightarrow S = {}^{13}C, {}^{15}N, {}^{29}Si, {}^{31}P$
 - Less common, but worthwhile:
 - I = ${}^{1}H \rightarrow S = {}^{77}Se, {}^{89}Y, {}^{113}Cd, {}^{119}Sn, {}^{129}Xe, {}^{195}Pt, {}^{199}Hg, {}^{207}Pb$
 - Fluorinated materials:
 - I = ${}^{19}\text{F} \rightarrow \text{S} = {}^{13}\text{C}, {}^{15}\text{N}, {}^{29}\text{Si}, {}^{31}\text{P}$
 - Low γ nuclei (e.g. ¹⁵N): more X and/or less ¹H
 power
 - Quadrupolar nuclei: different story

CP throughout the periodic table

- Experiment will be simple, if
 - Natural abundance is high
 - Larmor frequency is high
 - CP can be used in case of spin $\frac{1}{2}$ nuclei
 - difficult, if $T_{IS} >> T_{1\rho}$, e.g. for low γ nuclei
- Spin I must be considered
 - For spin > $\frac{1}{2}$ selectivity and connectivity information is more important than gain in sensitivity
 - Consider elements with several isotopes

CP throughout the periodic table

- Elements with several NMR aktive isotopes
 - 6Li ⁷Li
 - 10B 11B
 - 14N 15N
 - ³⁵Cl ³⁷Cl
 - ³⁹K ⁴¹K
 - 47Ti 49Ti
 - 50V 51V
 - ⁶³Си ⁶⁵Си
 - 69Ga 71Ga
 - ⁷⁷Se ⁷⁹Se
 - ⁷⁹Br ⁸¹Br
 - ⁸⁵Rb ⁸⁷Rb
 - ⁹⁵Mo ⁹⁷Mo
 - ⁹⁹Ru ¹⁰¹Ru
 - ¹⁰¹Rh ¹⁰³Rh
 - ¹⁰⁷Ag ¹⁰⁹Ag
 - 111Cd 113Cd
 - ¹¹³In ¹¹⁵In
 - ¹¹⁵Sn ¹¹⁷Sn ¹¹⁹Sn

- ¹²¹Sb ¹²³Sb - ¹²³Te ¹²⁵Te
- ¹²⁹Xe ¹³¹Xe
- ¹³⁵Ba ¹³⁷Ba
- ¹³⁸La ¹³⁹La
- ¹⁴⁷Sm ¹⁴⁹Sm
- ¹⁵¹Eu ¹⁵³Eu

 - ¹⁶¹Dy ¹⁶³Dy
 - 171yb 175yb
 - ¹⁷⁵Lu ¹⁷⁶Lu
 - ¹⁷⁷Hf ¹⁷⁹Hf
 - ¹⁸⁵Re ¹⁸⁷Re
 - 187Os 189Os
 - ¹⁹¹Tr ¹⁹³Tr
- ¹⁹⁹Hg ²⁰¹Hg
 - 203T 205T

- Spin ½
- Spin n
- Spin n/2
- > 99 % natl. abundance
- ¹⁵⁵Gd ¹⁵⁷Gd ⁹Be, ¹⁴N, ¹⁹F, ²³Na
 - ²⁷Al, ³¹P, ⁴⁵Sc, ⁵⁵Mn
 - ⁵⁹Co, ⁷⁵As, ⁸⁹Y, ⁹³Nb
 - ¹⁰³Rh, ¹²⁷I, ¹³³Cs, ¹³⁹La
 - ¹⁴¹Pr, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁹Tm
 - ¹⁸¹Ta, ¹⁹⁷Au, ²⁰⁹Bi

nucl. natl. abundance	γ _X > γ _{C-13}	$\gamma_{C-13} \geq \gamma_X \geq \gamma_{N-15}$	γ _{N-15} > γ _X
100- 70%	¹⁹ F ³¹ P		⁸⁹ Y ¹⁰³ Rh ¹⁶⁹ Tm
70-50%	2037 2057 		¹⁰⁷ Ag ¹⁰⁹ Ag
50-10%	¹²⁹ Xe	¹¹¹ Cd ¹¹³ Cd ¹⁷¹ Yb ¹⁹⁵ Pt ¹⁹⁹ Hg ²⁰⁷ Pb	¹⁸³ W
< 10%	³ He ¹¹⁵ Sn ¹¹⁷ Sn ¹¹⁹ Sn ¹²³ Te ¹²⁵ Te	¹³ C ¹⁵ N ²⁹ Si ⁷⁷ Se	⁵⁷ Fe ¹⁸⁷ Os

CP of "standard" nuclei

¹⁵ N		¹³ C	Р		
				frequen	cy
	nucleus	¹⁵ N	¹³ C	³¹ P	
	Larmor frequency [MHz]	40	100	162	
	X power at CP match [≈W]	500	200	150	
	relative attenuation X [dB]	-2	0	3	
	RF field [kHz]	55	63	65	
	relative attenuation ¹ H [dB]	2	0	0	

CP of "exotic" nuclei

¹⁵ N				¹³ C				³¹ F)			
											freque	ncy
57	Fe ⁸	9 y	¹⁹⁹ Hg	295	5i ¹¹	³Cd	:	1257	Ге ¹¹⁹	Sn		_
	nucleus				¹⁵ N			¹³ C		³¹ P		
		Larmor frequency [MHz]		,		40			100		162	
	Х	X power at CP match [≈W]			500		200		150			
	re	relative attenuation X [dB]			-2			0		3		
		RF field [kHz]			55			63		65		
	re	relative attenuation ¹ H [dB]				2		0		0		

Some reference compounds for CP set-up

nucleus	sample	shift (ppm)	relative to	contact (ms)	recycle (s)	frequency (MHz) rel. to 200	remarks
15 _N	glycine, enriched	-345	CH ₃ NO ₂	5	10	20.280213	natl. abundance: visible in 1 scan
29 _{Si}	Q_8M_8	12.4 (t) -110 (o)	TMS	5	10	39.758361	easy but expensive
31 _P	$(NH_4)H_2PO_4$	0	H ₃ PO ₄	1	4	81.013812	anything will do
77 _{Se}	H_2SeO_3		Se(Me) ₂	3	4	38.217585	1 scan, but poisonous easy, narrow
	$(NH_4)_2SeO_4$	-1040.2				38.128907	
89 _Y	Y(NO ₃) ₃ *H ₂ O	-53.2	sol. in H_2O	10	10	9.807451	visible after 1 scan FT
113 _{Cd}	Cd(NO ₃)*4H ₂ O	-100	$\mathrm{1m}\mathrm{Cd}(\mathrm{ClO}_4)_2$	15	8	44.381609	
119 _{Sn}	Sn(cyclohexyl) ₄	-97.35	Sn(Me) ₄	1	20	74.639360	easy, 1 scan
129 _{Xe}	Xe at 40b in hydroquinone clathrate, 3 hours	222	Xe in air	30	5	55.333703	Xe in air is visible overnight (single pulse)
199 _{Hg}	Hg(OAc) ₂	-2487	Hg(Me) ₂	5	10	35.765352	16 scans, 125 kHz, 4K points (lots of sidebands)
		-2493					
207 _{Pb}	Pb(phe) ₄					41.861650	1 scan, poisonous, no good set-up
	Pb(p-tol) ₄	-148.8	Pb(Me) ₄	5	12	41.863710	better, but also poisonous, 1 scan