

Principios Básicos de RMN en sólidos destinado a usuarios

Gustavo Monti

SPECTRAL EDITING

Editing

- sideband suppression
- •discrimination of C_(quarternary), CH, CH2, CH3
 - Non Quarternary Suppression (NQS)
 - Polarization/Polarization Inversion (CPPI)

Relaxation (in CPMAS experiments)

- T_1 and $T_{1\rho}$ measurement for X (e. g. 13C) using CP
- T_1 and $T_{1\rho}$ measurement for ¹H using CP

Spinning Sideband Suppression:

Spinning speed may be limited due to

- hardware
- sample shape (e.g. spinning fibers or tablets)
- sample behaviour (e. g. phase changes under pressure)

TOSS Total Suppression of Spinning Sidebands

	$\tau_1/ au_{ m rot}$	$\tau_2/\tau_{\rm rot}$	$\tau_3/\tau_{\rm rot}$	$\tau_4/\tau_{\rm rot}$	τ_5/τ_{rot}	$ au_{\rm total}/ au_{ m rot}$
TOSS A	0.1885	0.0412	0.5818	0.9588	0.2297	2.0000
TOSS B	0.1225	0.0773	0.2236	1.0433	0.7744	2.2412

TOSS Total Suppression of Spinning Sidebands

NQS: Non Quarternary Suppression


```
t_{dephase} for <sup>13</sup>C: typically 20 - 100 µs
```


Combined with NQS

dephasing delay within TOSS timing

	$\tau_1/\tau_{\rm rot}$	$\tau_2/\tau_{\rm rot}$	$\tau_3/\tau_{\rm rot}$	$\tau_4/\tau_{\rm rot}$	τ_5/τ_{rot}	$ au_{\rm total}/ au_{\rm rot}$
TOSS A	0.1885	0.0412	0.5818	0.9588	0.2297	2.0000
TOSS B	0.1225	0.0773	0.2236	1.0433	0.7744	2.2412

Polarisation/Polarisation Inversion Pulse Sequence

inversion time for $^{13}\mbox{C}$: typically 20 - 400 $\mu\mbox{s}$

Polarisation/Polarisation Inversion

HCl L-tyrosine hydrochloride

wonterespheringenergeliseren handeren handeren

+: C, CH₃ 0: CH -: CH₂

proghtering	eertale somethinge	herenentige	₠₳₳₼₺₩₽₽₽₽	of by divelops	%,∼∿j∩ _s nk _e ps		אור האיליאי אי	of the topological	64-q ¹ 19 ¹ 1-q- ⁴ -y- ³ 16	,erd(r/4)balmet	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.Ivákystergejsák	level in solution	workhowe	1941 Property Prof.	a hay so that a second so	Magguouide
		1.20															
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20 ppm

CP-Enhanced Relaxation Time Measurement

Enhancement

- = sensitivity (and faster recycling) for X
- = resolution (for 1 H)

CP Enhanced *T*₁ **Relaxation Pulse Sequence**

13C T1 measurement

Glycine ¹H T₁ Relaxation via CP to

12.5 kHz

ω _{MAS} /2π [kHz]	T₁ [ms]
5	720
10	580
12.5	490

5.0 kHz

ure 6. ¹³C magnetization as a function of the spin-lock time τ for selected carbons in the $T_{1\rho C}$ experiment. The fittings of the perimental data to the Eqn (1) are shown. (a) (HCI.CIP)₃Al (I), (b) (HCI.CIP)₃Al (II), (c) (HCI.NOR)₃Al (I), (d) (HCI.NOR)₃Al (II). Thus obtained from the fittings are given in Table 4.

Quantitative CP: QUCP

The QUCP pulse sequence. The DARR irradiation with intensity of $\omega_{1H} = v_{MAS}$ is applied on I channel during the mixing time. Solid bars denote $\pi/2$ pulses. Phase cycles: $\Phi 1 = x,x; \Phi 2 = y; \Phi 3 = y,y,y,x,x,x,x; \Phi 4 = x,x,x, x,y,y,y; \Phi 5 = x,x,y,y,x,x,y,y;$ receiver = y,y,x,x,y,y,x,x.

G. Hou et al. / Chemical Physics Letters 421 (2006) 356-360

13C MAS spectra of uniformly 13C, 15N-labeled tyrosine acquired with a single 90 pulse with proton decoupling (a), CP (b), QUCP (c) and NOP (d, e). Eight FIDs were accumulated for each experiment, and the spectra were plotted on the same amplitude scale. The relaxation interval was 500 s for (a), 16 s for (b–e). The contact time was 0.5 ms for (b) and (c). For QUCP experiment, the DARR irradiation time was 1 s. The mixing times are 10 and 20 s for (d) and (e), respectively.