

NUCLEAR RELAXATION IN A REMATIC LIO	JID ORVSTAL
P. Pincus*	
Laboratoire de Physique des Solides+, Faculté des Seie	ences, 91 Orsay, France
crystal arising from the <u>fluctuations in the</u> results in relaxation times of the order of o of ordinary liquids. There is however an a dence on the nuclear resonance frequency,	orientational order. This one second which is typical Autional striking depen- $T_1 \alpha \omega^{1/2}$
For a given wavevector q and polarization q ,	If we boldly assume that the orientational and diffusive motions are uncoupled, the correlations functions may be mitted
hydrodynamic and the other mainly orientational. $J(\omega) = \int_{-\infty} G(t) e^{-t\omega t} dt$. For these latter modes (of interest here) the relaxation spectrum is: $G(t) = \langle \delta n^{-}(0) \delta n^{*}(t) \rangle$ $i\omega(q) = i(Kq^{2} + XH^{2})/\gamma$. (7)	$G(t) = (2\pi)^{-2} \int dq \left(\frac{k_BT}{k_Bq^2}\right) e^{-(k-\tau)q^2t} e^{-Dq^2t} (8)$ where D is the diffusion constant, $D = k_BT/6 \pi a \tau (a \text{ is a molecular dimension})$

$$\begin{split} \overline{J_{K}(\tilde{S})} &= \operatorname{Re} \int_{-\infty}^{\infty} G_{K}(\ddagger) e^{-iS\ddagger} d\ddagger \\ \overline{Y_{2,\beta}(t)} &= \sqrt{\frac{5}{16\pi}} (3\cos^{2}\vartheta(t) - 1), \\ \overline{Y_{2,\beta}(t)} &= \sqrt{\frac{5}{16\pi}} (3\cos^{2}\vartheta(t) - 1), \\ \overline{Y_{2,\beta}(t)} &= -\sqrt{\frac{15}{16\pi}} \sin \vartheta(t) \cos \vartheta(t) \exp(i\varphi(t)), \\ \overline{Y_{2,1}(t)} &= -\sqrt{\frac{15}{8\pi}} \sin \vartheta(t) \cos \vartheta(t) \exp(i\varphi(t)), \\ \overline{Y_{2,2}(t)} &= \sqrt{\frac{15}{32\pi}} \sin^{2}\vartheta(t) \exp(2i\varphi(t)). \\ \overline{Y_{2,2}(t)} &= \sqrt{\frac{15}{32\pi}} \sin^{2}\vartheta(t) \exp(2i\varphi(t)). \\ \mathbf{Small angle fluctuations} \\ 1 \\ T_{1\rho}(\omega_{1}, \omega_{0}) &= \frac{K}{2} [3J_{0}(2\omega_{1}) + 5J_{1}(\omega_{0}) + 2J_{2}(2\omega_{0})], \\ 1 \\ \frac{1}{T_{1\rho}(\omega_{1})} &= \frac{3K}{2} (J_{0}(2\omega_{1}) + \alpha], \end{split}$$

J. Chem. Phys. 86 (2	?), 15 January 1987
Nuclear spin relaxation due to o A phase	order director fluctuations in the smectic
M. Vilfan, M. Kogoj, and R. Blinc J. Stefan Institute, E. Kardelj University of Lju	bljana, 61111 Ljubljana, Yugoslavia
Since 1969 a number of studies have been devoted to nuclear spin relaxation in the smectic A phase. ¹⁻⁸ By now strong evidence exists that collective modes, similar to ne- matic order director fluctuations, persist in the smectic A mesophase giving rise to a relaxation rate $(T_1^{-1})_{OP}$ propor- tional to the inverse square root of the Larmor frequency ω_L . However, at low frequencies a deviation from this behavior has been observed. ^{3.5} The leveling off of the dispersion curve was ascribed by some authors to the influence of the smectic order parameter, ^{3.9} and by others formally to the lack of the ultralong wavelength elastic deformations which cannot ex- ceed the dimension of a uniformly oriented domain ("low frequency cutoff"). ⁵	$J_{1}(\omega_{L}) = S^{2}r^{-6}\operatorname{Re}\int_{-\infty}^{\infty} \langle \delta \mathbf{n}(\mathbf{r},0) \cdot \delta \mathbf{n}(\mathbf{r},t) \rangle e^{i\omega_{L}t} dt .$ $J_{1}(\omega_{L}) = \frac{S^{2}kTr^{-6}\eta}{4\pi^{2}K_{1}^{3/2}\sqrt{B}} \times \ln \frac{q_{w} + \left[q_{w}^{2} + (\omega_{L}\eta/2\sqrt{K_{1}B})^{2}\right]^{1/2}}{\omega_{L}\eta/(2\sqrt{K_{1}B})},$ (10)
this phase. Definite conclusions about it cannot be made at present in view of the indefinitiveness concerning the relative importance of two competing relaxation mechanisms in the MHz region in the smectic A phase of liquid crystals, i.e., of order fluctuations on one side and molecular self-diffusion	where q_{xc} denotes the upper limit of the component of wave vector in the direction perpendicular to the smectic layers while the upper limit of q_1 is taken ∞ . $J_1(\omega_L)$ calculated within this model would diverge for $q_{xc} \to \infty$. The existing experimental data are not in surrement with the logarithmic
on the other. Molecular self-diffusion gives namely-taken	frequency dispersion as predicted by Eq. (10).

	The a	ction	of sou	ind on	a nem	atic	
Vot	ume 29, Number 24	PHYS	ICAL REVI	EW LETTEI	R S	11 December	1972
	Orienting A	ction o	f Sound o	n Nematio	: Liquid (Crystals	
			W. Hel	rich			
	Physics Departs	nent, F.	Hoffmann-L (Received 5	a Roche & C July 1972)	o., Basle,	Switzerland	
Гhe	orienting actio	on of ul	trasound	on liquid	crystals i	related to	the
hee		um entr	opy prod	uction ^{a)}			
	Département d'Ingénierie	, Université d	du Québec à Troi	s-Rivières, Québec	, G9A 5H7, Can	ada	
	(Received 22 August 197	78; accepted f	for publication 10	October 1970)			

30 July 2002	CHEMICAL	
R Chemical Physics Letters 361 (2001) 237-244	VWW.devier.com/locate/oplet:	
Enhancement of order fluctuations in liquid crystal by sonication	a nematic 30 years lat	er
F. Bonetto ^{a,*} , E. Anoardo ^{**-*} , R. Kimmi [*] faastad de Manendika, Atronemia y Faira, chevietad Nacional Citada Uniteritara, C.P. 2000 Garaba, Argenina [*] seknor Aeronamatipheirokopa, Unacenat Cita, 8000, Can. Received 7 November 2001: In faind form 8 May 2002	ich o Càntha, iarmay	
A second model is proposed on the ba ultrasonic waves may change the molecu	sis that lar ori-	
of the form $\frac{1}{2}Q_{SL}(\hat{n} \cdot \hat{q}_{a})^{2}$ is proposed for energy density. In this expression, Q_{SL} is stant independent of the wave vector	the free a con- \vec{a} and $\langle V_{\text{int}} \rangle = \frac{u_2 \rho_0 I}{v^3} (\mathbf{k} \cdot \hat{\mathbf{n}})$) ² .
PHYSICAL REVIEW E 66, 051708	(2002)	
Acoustic realignment of nematic li	quid crystals	
I. V. Selinger, M. S. Spector, V. A. Greanya, B. T. Weslowski, for Bio/Molecular Science and Engineering, Naval Research Labors Witchington, DC 2075 (Received 10 July '2002', published 19 Nov	D. K. Shenoy, and R. Shashidhar tory, Code 6900, 4555 Overlook Avenue SW, ember 2002)	
	29 July 2002 Chevical Physics Latters 361 (2002) 237-244 Enhancement of order fluctuations in a liquid crystal by sonication F. Bonetto ^{2,1} , E. Anoardo ^{2,2,2} , R. Kimm ^{1,2} Facilitat & Maintender, A. F. Wolf, Chevrolitat National Chevrolet Theorem 2, Frinz, Universität National ^{1,2} Status & Maintender, C. Monardo, 1, 2003 ^{1,2} Status & Maintender, C. Monardo, 1, 2004 ^{1,2} Status & Maintender, C. Maintender, 1, 2004 ^{1,2} Status & Maintender, 1, 2004 ^{1,2} Status & Status & Maintender, 1, 2004 ^{1,2} Status & Spector, V. A. Greanya, B. T. Weslowski, for Biol/Molecular Science and Engineering, Maral Research Labora ^{1,2} Status & Spector, V. A. Greanya, B. T. Weslowski, for Biol/Molecular Science and Engineering, Maral Research Labora ^{1,2} Status & Spector, V. A. Greanya, B. T. Weslowski, for Biol/Molecular Science and Engineering, Maral Research Labora	$(V_{int}) = \begin{pmatrix} u_2 \rho_0 I \\ v_3 \\ v_$

V- Membranas lipídicas

The low-frequency relaxation dispersion in the liquid crystalline state shows a broad interval where $T_1(\omega)$ is proportional to ω^1 . Obviously, the rich experimental details, revealed by Figures 1 and 2, cannot be interpreted quantitatively by a relaxation model restricted to <u>one single process</u>, say by the $T_1(\omega) \sim \omega^{1/2}$ or $T_1(\omega) \sim \omega^1$ laws favored by Brown et al.¹⁻⁶ or Marqusee et al.¹¹ A the two concepts. However, as an alternative to Kimmich's defect diffusion approach, we employed a less specific model for the individual molecular reorientations, 30-33 which avoids several assumptions not appropriate for the liquid crystalline phase.34 When we tried to fit such a superposition of two processes to our $T_1(\omega)$ and $T_1(T)$ measurements in a self-consistent way, it was easily recognized that a combination of only two relaxation mechanisms did not yield satisfactory results. In particular, the

nterpre Jsing Fi	tation of Molecular Dynamics on Different Time Scales in Unilamellar Vesicles eld-Cycling NMR Relaxometry
	Carla J. Meledandri, [†] Josefina Perlo, [‡] Ezequiel Farrher, [‡] Dermot F. Brougham, ^{*,†} and Esteban Anoardo ^{*,‡}
	National Institute for Cellular Biotechnology, School of Chemical Sciences, Dublin City University, Dublin 9 Ireland, and Larte - Famaf. Universidad Nacional de Córdoba and Instituto de Física Enrique Gaviola (CONICET), Córdoba, Argentina
PHYS	ICAL CHEMISTRY B
	dx.doi.org/10.1021/jp2009034 J. Phys. Chem. 8 2011, 115, 3444–3451 pubs.acs.org/JPCB
Tom	perature and Size Dependence of Membrane Melocular
Dyna	mics in Unilamellar Vesicles by East Field Cycling NMP
Relax	cometry
Iosefina	Perlo ^{+#} Carla I. Meledandri ^{+,§#} Esteban Anoardo ^{+,†} and Dermot F. Brouebam ^{+,†}
Joseinia	Terlo, Carla J. Metedantin, Esteban Anoado, and Dernort P. Droughan
Física, U	no de Relaxometría y Técnicas Especiales, Grupo de Resonancia Magnetica Nuclear, Facultad de Matemática, Astronomia y niversidad Nacional de Córdoba and IFEG (CONICET), Córdoba, Argentina
*National	Institute for Cellular Biotechnology, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
⁵ Damarton	ent of Chemistry University of Otago Dunedin New Zealand

Microscop DOPC/10% 80nm 298K	ic approach	E Constanting of the second se			
	Parameter	model value			
		Unaffected lipids $(l_d \text{ phase})$	Affected lipids $(l_o \text{ phase})$		
	η D ₂ O [Kg/s.m]	1.1 x 10 ⁻³	1.1 x 10 ⁻³		
	σ	0	0		
	<i>a</i> [nm]	1	1		
40%	Cholesterol area [nm ²]		0.35		
	Lipid area [nm ²]	0.73	0.71		
Affected lipids	<i>K</i> [J]	$(5.4\pm0.8) \ge 10^{-20}$	$(30\pm10) \times 10^{-20}$		
	$A_{OF}[s^{-}]$	$(1.0\pm0.3) \ge 10^{2}$	$(3\pm 2) \times 10^{7}$		
	$D \left[\frac{m^{-}}{s} \right]$	$(1.3\pm0.4) \times 10^{-1}$	$(0.5\pm0.2) \times 10^{-12}$		
	$\tau_{\rm D}[{\rm s}]$	$(0.7\pm0.2) \ge 10^{9}$	$(1.5\pm0.5) \times 10^{-5}$		
	$A_D[s^-]$	$(1.0\pm0.5) \times 10^{-8}$	$(2.1\pm0.9) \times 10^{-8}$		
	$\tau_{R}[S]$	$(1.1\pm0.5) \times 10^{8}$	$(4.4\pm0.9) \times 10^{8}$		
	$A_R[S]$	(1.0±0.5) x 10 (5.84	(0.8±0.1) x 10		
	R [nm]	(5.64	0.63		
	N° of affected lipids by		3.6		
	cholesterol				

