
© 2006 Nature Publishing Group 

 

Counterfactual quantum computation through
quantum interrogation
Onur Hosten1, Matthew T. Rakher1†, Julio T. Barreiro1, Nicholas A. Peters1 & Paul G. Kwiat1

The logic underlying the coherent nature of quantum information
processing often deviates from intuitive reasoning, leading to
surprising effects. Counterfactual computation constitutes a
striking example: the potential outcome of a quantum compu-
tation can be inferred, even if the computer is not run1. Relying
on similar arguments to interaction-free measurements2 (or
quantum interrogation3), counterfactual computation is
accomplished by putting the computer in a superposition of
‘running’ and ‘not running’ states, and then interfering the two
histories. Conditional on the as-yet-unknown outcome of the
computation, it is sometimes possible to counterfactually infer
information about the solution. Here we demonstrate counter-
factual computation, implementing Grover’s search algorithm
with an all-optical approach4. It was believed that the overall
probability of such counterfactual inference is intrinsically
limited1,5, so that it could not perform better on average than
random guesses. However, using a novel ‘chained’ version of the
quantum Zeno effect6, we show how to boost the counterfactual
inference probability to unity, thereby beating the random
guessing limit. Our methods are general and apply to any
physical system, as illustrated by a discussion of trapped-ion
systems. Finally, we briefly show that, in certain circumstances,
counterfactual computation can eliminate errors induced by
decoherence.

The essential feature of Grover’s algorithm is that an amplitude-
enhancement technique transfers the amplitude from a uniform
database distribution to a particular element ‘marked’ by an ‘Oracle-
type’ processor4,7. For instance, consider a database of four elements
with input state j00l: At the end of the algorithm, if the marked
element (ME) is no. 1, no. 2, no. 3 or no. 4, the final state of the
readout qubits is j00l; j01l; j10l or j11l; respectively.

Counterfactual computation (CFC) conceptually proceeds as
follows: (0) the initial state of the computer can be written as jwinl¼
jOff l j00l; the jOff=Onl qubit being the ‘operating switch’; (1) apply
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2
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: jOff l! jOff lþjOnlffiffi
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‘switch’; (2) run the algorithm if the ‘switch’ is ‘On’; (3) apply R p
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to

the ‘switch’ only if the registers are in state j00l. If the ME is no. 1, the
effect is:
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All the amplitude ends up in state jOnl j00l; with equal amplitudes
constructively interfering from histories with the computer ‘running’
and ‘not running’.

For other MEs (with xy ¼ 01, 10 or 11), we have:
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Now, there is a 1
4 probability to measure the final state jOff l j00l; from

which we conclude that the ME is not no. 1 (as this term did not
appear when ME ¼ no. 1). There is no amplitude from a history with
the computer ‘running’ in this outcome; therefore, we can conclude
that the ME is not no. 1 without the computer ‘running’. (Later
we describe a method to counterfactually determine the actual
outcome.)

An optical realization of CFC is shown in Fig. 1 as an interfero-
meter. We use the optical circuit in ref. 8 for Grover’s algorithm
(shown as a black box in Fig. 1), with slight changes to improve
performance (see Supplementary Information). This optical circuit
takes in a single photon in path a with H (horizontal) polarization,
that is, jaHl: The output path a or b and polarization H or V
(vertical) of the photon depend on the ME: no. 1!jaHl, no. 2!jaVl,
no. 3!jbHl and no. 4!jbVl. Such single-photon encoding, though
not scalable, suffices for our pedagogical purpose. Figure 2a shows
that the algorithm as realized operates quite precisely, with an average
error of less than 2.6%.

To realize CFC, the path lengths of the interferometer in Fig. 1 are
adjusted to give destructive interference at detector D1 when the ME
is no. 1, that is, if the photon traverses both paths indistinguishably, it
is definitely detected at D5 (Fig. 1). If the ME is not no. 1, there is no
amplitude exiting the search algorithm in the jaHl mode, and no
amplitude from the algorithm can reach the second beam-splitter
(BS), thus eliminating the destructive interference at D1. Therefore,
this time there is a 1

4 probability of detecting the photon at D1,
indicating that the ME is not no. 1, even though the photon came
from the algorithm-free path (that is, the computer did not run).
Other possibilities are that with probability 1

2 we find out the answer
but the photon comes from the algorithm (D2, D3 or D4), and
with probability 1

4 we detect the photon at D5 (after it has travelled
the algorithm-free path) leading to no definite information (as a
detection also occurs at D5 if ME ¼ no. 1). The efficiency of CFC can
be quantified as h¼ PD1

= PD1
þ PGrover

� �
¼ 1=3; where PD1

is the
probability of measuring the photon at D1, a CFC; and PGrover is the
probability of the photon passing through the algorithm.

Experimentally, we used an equivalent but more stable interfe-
rometer configuration (see Supplementary Information); our CFC
system performed as indicated in Fig. 2b, with an efficiency khl¼
0:319^ 0:009 (averaged over ME – no. 1). The interrogation inter-
ferometer had an intrinsic visibility of 97%, implying imperfect
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destructive interference at the D1 output when the ME was no. 1. A
detection at the D1 output can thus no longer indicate a CFC with
100% certainty. We characterize this feature in terms of PSucc; the
probability of a successful CFC upon a detection at the interrogation
detector D1: PSuccjno: i ¼ PD1jno: i=ðPD1jno:1 þ PD1jno: iÞ: Here the prob-
abilities are conditional on the ME (i ¼ 2, 3, 4). In the experiment we
achieved kPSuccl¼ 0:943^ 0:009:

If one replaces the first (second) 50/50 beam splitter by a highly
reflecting (transmitting) one, reducing the amplitude passing
through the algorithm, h can be increased9 to a maximum value
of 1

2 : We tested this (here using attenuated coherent states) with a
5/95 BS, achieving khl¼ 0:472^ 0:007 (0.487 theoretically), with a
slight decrease in the CFC success: kPSuccl¼ 0:877^ 0:009: (See
Supplementary Information for a modified version of CFC that
interrogates all database elements simultaneously to determine the
ME itself; however, this modified version is also limited to h¼ 1

2Þ:
The efficiency can be increased from 1

2 to 1 using the quantum
Zeno effect1, just as it was used for quantum interrogation3,9. (Before
proceeding, we note that our approach should not be confused with
the interesting proposal to combine two-photon absorption and the
quantum Zeno effect to enable efficient optical quantum compu-
tation10, nor with the suggestion to use quantum interrogation inside
Grover’s search algorithm11.) Specifically, the switch is rotated
successively in small steps ðRð2vÞ : jOffl! cosvjOff lþ sinvjOnl
and jOnl!2sinvjOff lþ cosvjOnl; v¼ p

2N ; integer N .. 1) from
state jOff l to jOnl; and the output registers are monitored at each
step. If the ME is no. 1, measurements on the output registers result in
j00l without affecting the evolution due to rotations, leaving the
system in jOnl j00l after N rotations. However, if the ME is not no. 1,
then the system evolves as:

jOff l j00l R
! ðcosvjOfflþ sinvjOnlÞj00l Grover

���!

cosvjOff l j00lþ sinvjOnl jxyl Measure
���!< cosvjOff l j00l

ð3Þ

The measurement on the output registers results in state j00l; leaving
the computer in the jOffl state with probability cos2ð p

2NÞ: After a total
of N cycles, the probability of finding the system in state jOff l j00l
is cos2N p

2N

� �
; which tends to 1 as N!1: Thus, if the ME is not no. 1,

the final state is jOff l j00l without the computer running; and if the
ME is no. 1, the final state is jOnl j00l; that is, this time the computer
runs. Note that at best one can exclude a single value of the ME with
these techniques.

Now we describe a novel ‘chained Zeno effect’ that will permit
us to counterfactually determine the actual ME with h! 1: The
strategy is to place the above ‘Zeno scheme’ inside another one, to
avoid the computer running even if the ME is no. 1. For this purpose
we use a third ‘switch’ state jOff 0 l; in addition to jOff l and jOnl; and

define an additional rotation R 0 to couple jOff 0 l to jOff l ðR 0
ð2v 0

Þ:
jOff 0 l! cosv 0

jOff 0 lþ sinv 0
jOff l and jOff l!2sinv 0

jOff 0 lþ
cosv

0
jOffl; v 0

¼ p
2N 0 Þ: A possible optical implementation of the

technique is shown in Fig. 3a. A single photon starts in cavity
‘Off

0
’. Using active optical elements (Pockels cells), a small amount

of amplitude is exchanged between ‘Off 0 ’ and ‘Off ’ via BS1 (see
Methods for details). The small amplitude then performs the high-
efficiency quantum Zeno cycles described above (N times between
cavities ‘Off ’ and ‘On’). If the ME – no. 1, the small amplitude
component effectively stays in cavity ‘Off ’. But if ME ¼ no. 1, then
first, all the small amplitude component transfers to cavity ‘On’, and
then, via the Pockels cell in cavity ‘On’, is actively absorbed at A1. Now
the entire procedure starting with the amplitude exchange between
‘Off 0 ’ and ‘Off ’ is repeated, a total of N 0 times. At the end of N 0

£N
total cycles, if ME ¼ no. 1 (– no. 1) then the photon will be
measured in cavity ‘Off 0 ’ (‘Off ’) with probability approaching one
(Fig. 3e) as N

0
!1 N

N 0 !1
� �

: In neither of these cases does the
computer ‘run’. One can then re-interrogate for the other elements
one by one—thereby identifying the ME counterfactually—by
changing the connections to the algorithm (Fig. 3b). Curves in
Fig. 3e characterize a lossless system; for large N

0
, N, even small

losses become detrimental3, limiting the achievable performance in
any real system.

The necessity to interrogate database elements one by one would
negate the quantum speed-up advantage. However, it is possible to
circumvent this by interrogating the logical value of each qubit one
by one instead. To do this, we need to implement both the search
algorithm and its adjoint—which undoes the search—and we need to
perform the measurements (giving rise to the Zeno effect) between
the algorithm and its adjoint. The first (second) optical circuit in
Fig. 3c can be used in cavity ‘On’, to interrogate for the logical value of
the first (second) qubit. If the value of the first (second) qubit is ‘a’
(H), then, at the end of the cycles, the photon will be measured in
cavity ‘Off 0 ’; likewise if the value is ‘b’ (V), then the photon will be

Figure 1 | An optical realization of counterfactual computation. By means
of a 50/50 beam splitter (BS) (which serves as a p

2-rotation), an H-polarized
single photon is put in a superposition of passing and not passing through
the algorithm, encoding the ‘operating switch’ in different spatial modes,
‘On’ and ‘Off’. Then on a second 50/50 BS, the two histories are interfered
only if the photon after the algorithm is in the mode jaHl. The modes jaHl
and jaVl are distinguished via a polarizing beam splitter (PBS) which
transmits H and reflects V.

Figure 2 | Experimentally determined probabilities for the output state
of 670-nm single photons conditionally prepared through
downconversion17. a, The performance of the search algorithm (see
Supplementary Information for details). The total probability of finding the
photon in any incorrect output port is 2.6% (averaged over MEs); thus, the
ME could be accurately determined with a single photon passing through
the algorithm. b, Output state probabilities for the set-up in Fig. 1. Grid lines
closest to data points represent theory. We attribute slight deviations from
theory to imperfect beam splitting ratios, imperfect mode matching
(apparently from wavefront distortions in various elements), and imperfect
path-length balancing.
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measured in cavity ‘Off ’. In neither case does the computer (or its
adjoint) run. (See Supplementary Information for more details,
including the quantum circuit diagram of this method.)

The physical implementation of our proposals is not limited to
optical systems. Consider qubits encoded using hyperfine ground
states (j0l and j1l) of two trapped ions. In the simplest scheme (the
analogue of Fig. 1), the ions would start in trap ‘Off ’ ðjOff l j00lÞ: The
atoms can be prepared in an equal superposition of both atoms being
in trap ‘Off ’ or being in another trap ‘On’ (see Methods). Then, a
measurement on the atoms can be performed, causing at least one of
them to fluoresce if the ME – no. 1 but leaving the system undis-
turbed if ME ¼ no. 1. After interfering the two histories, if
ME ¼ no. 1 the atoms end up in trap ‘On’. If instead ME – no. 1,
then there is a 1

4 probability of finding the atoms in trap ‘Off ’ without
observing any fluorescence during the measurement process above
(which means that the algorithm did not run), from which we could
counterfactually conclude that the ME – no. 1. In the ‘chained Zeno’
version, one would repeatedly look to see if the algorithm had run;
but the atoms never appear in trap ‘On’, and the final location of
atoms (trap ‘Off 0 ’ or ‘Off ’) would counterfactually reveal the results.

To the best of our knowledge, we have achieved the most accurate
(2.6% error) realization to date of Grover’s search algorithm, albeit
with a non-scalable single-photon implementation. Using this set-
up, we made the first proof-of-principle demonstration of CFC,
inferring that a particular element was not the answer to the
computation, even though the computer did not run (with efficiency
h < 0.319). Then, we showed in principle how to obtain complete
information from the algorithm unconditionally, without the algo-
rithm ever running, using a ‘chained’ Zeno effect. In fact, these CFC
methods still work if the algorithm were to output non-orthogonal
states as answers (for example, Grover’s algorithm in a larger

database), or if the ‘Oracle’ of the search algorithm were to be in a
quantum superposition of marking different elements (see Sup-
plementary Information).

Decoherence in quantum computing occurs owing to coupling to
uncontrolled degrees of freedom—the environment—and results in
incomplete interference between qubit states, leading to errors. In
CFC, although the algorithm does not run, it still needs to be ready to
run correctly, for all the critical interference effects to occur (for
example, for the case of trapped ion computation, all the laser pulses
for state manipulation still need to be sent into the trap, even if after
the fact there was no ion there). For this reason, one might conclude
that CFC would still necessarily be subject to decoherence-induced
errors. In the Methods section, however, we show that by using a
variant of the ‘chained’ Zeno CFC, in certain circumstances it is
possible to protect computations against decoherence. When this
scheme succeeds (that is, when the photon does not get absorbed;
Fig. 3a and d), the total probability amplitude that has actually run
through the algorithm is very small (,,1, though not zero). Conse-
quently, coupling to the environment is small and decoherence-
induced errors are suppressed. It remains to be seen whether the
success probability can be made arbitrarily close to unity regardless of
the amount of error. Nevertheless, by slightly modifying our
approach, it may be possible to design error-suppressing counter-
factual qubit gates, for use in scalable quantum computing
architectures.

METHODS
CFC using the ‘chained Zeno effect’. Using a polarizing BS and Pockels cells, a
single photon is switched into cavity ‘Off 0 ’ (Fig. 3a). By firing the Pockels cells at
appropriate times, cavities ‘Off 0 ’ and ‘Off ’ are allowed a single coherent
amplitude exchange via BS1, after which the cavities are isolated again. While
the vast majority of the amplitude is cycling in cavity ‘Off 0 ’, the small amount of
amplitude that has been allowed to leak into cavity ‘Off ’ performs the high-
efficiency quantum Zeno cycles described in the text (N times between cavities
‘Off’ and ‘On’). At each step, the amplitude exiting the algorithm is directed to
an absorber (A2 or A3) if the ME is different from no. 1, effectively projecting the
leaked amplitude into cavity ‘Off ’, assuming N .. 1. In contrast, if the ME is
no. 1, at the end of N cycles all of the small amplitude component has coherently
moved into cavity ‘On’; when the Pockels cell in this cavity is fired to terminate
the amplitude at A1, no amplitude is left in either cavity ‘Off’ or ‘On’. In fact, this
effectively projects the state into cavity ‘Off 0 ’, assuming N 0

.. 1.

Now we once again temporarily couple cavities ‘Off
0
’ and ‘Off’, and repeat the

‘Off’–‘On’ (inner) cycling another N times. The procedure ends after repeating
this entire procedure (outer cycle) N

0
times, for a total of N

0
£N inner cycles.

Upon successful operation, if the ME is no. 1 (not no. 1), the photon ends up in
cavity ‘Off 0 ’ (‘Off ’).
Error suppression. In our theoretical model, decoherence causes depolariz-
ation. Assume that, with probability e, the search algorithm becomes entangled
with the environment, and outputs 12 3e

4

� �
j00l k00j þ e

4 j01l k01j þ e
4 j10l k10j þ

e
4 j11l k11j instead of j00l k00j; outputs e

4 j00l k00j þ 12 3e
4

� �
j01l k01j þ

e
4 j10l k10j þ e

4 j11l k11j instead of j01l k01j; and so on. In an attempt to suppress
these errors, we use a variant of the ‘qubit-by-qubit’ ‘chained’ Zeno CFC (note
that the algorithm adjoint will also introduce errors, making the net probability
of entanglement with the environment 2e 2 e 2). Instead of measurements
between the algorithm and its adjoint (Fig. 3c), we apply an extra p-phase
shift to the state if the ‘operating switch’ is jOnl and the state of the qubit being
interrogated is j1l (Fig. 3d). After the algorithm adjoint we perform a measure-
ment on the output registers to ensure that the state is j00l (that is, absorb the
photon if it is not in mode ‘aH’), as the search algorithm and its adjoint together
should leave the output registers unchanged, that is, j00l; in the case of no errors.
If the state of the qubit being interrogated is j1l; then because of the extra
p-phase shift, any amplitude entering the ‘On’ state is interferometrically
directed back to ‘Off ’ (of course degraded by decoherence). But, if the state is
j0l; then the amplitude coherently builds up in ‘On’ (also degraded by
decoherence), depleting the amplitude in ‘Off’, in effect inhibiting the coherent
flow from ‘Off 0 ’ to ‘Off ’. At the end, if the qubit being interrogated is j0l ðj1lÞ; we
expect the system to stay in (move to) ‘Off 0 ’ (‘Off ’).

Applying the extra p-phase shifts, instead of measurements, is analogous to
the Super-Zeno effect12 (a bang-bang type control13) instead of the Zeno effect,
and preserves the quantum state of a system much more efficiently. Optimum
calculations (N 0

¼ 70, N ¼ 40; N
N 0 .. 1 not being necessary for the Super-Zeno

Figure 3 | Proposed set-up for the ‘chained Zeno effect’. Three cavities
correspond to three states of the switch (jOff 0 l, jOffl and jOnl), separated by
BSs—the rotation operators. Pockels cells (PCs) rotate the polarization by
908 on demand; half-wave plates (HWP) at 458 rotate the polarization by 908.
GSA, Grover’s search algorithm. a, Interrogation for element no. 1. A1–A3

are absorbers. b, Settings for the interrogation of different elements.
c, Set-up configurations for qubit-by-qubit interrogation. GSA† undoes the
action of GSA. d, Configurations for error suppression. p-PS induces a
p-phase shift on path b; HWP at 08 induces ap-phase shift on polarization V.
e, Probability of successful interrogation for the set-up in a, as a function of
the cycling parameters N 0 and N (numerically evaluated).
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version) show that, for single-pass error probability e ¼ 0.05 ð2e2 e2 ¼ 0:0975Þ;
error-suppressing CFC yields the value of the qubit being interrogated 0.944 of
the time with an error probability of only , 2£ 1024: The remaining 0.056
(,2e 2 e 2) of the time the system suffers decoherence and fails, and the photon
gets absorbed at one of the absorbers in Fig. 3d. Even for a much larger e ¼ 0.5
(2e 2 e 2 ¼ 0.75), we still learn the value of the qubit 0.508 of the time, with an
error of only ,0.035.
CFC with trapped ions. Consider ions starting in state jOff l j00l: In order to put
the computer in a superposition, the atoms can first be prepared in the entangled
state j00lþj11lffiffi

2
p (by applying the rotation R p

2

� �
(see main text) to the first qubit, and

then applying a controlled-not gate on the qubits); with the aid of appropriate
laser beams, a state-dependent spatial force can then be applied to the atoms,
resonantly driving and separating the wavepackets of different internal states14.
At this point a new external potential can be introduced, which traps j0l states in
trap ‘Off’, and j1l states in trap ‘On’: jOff l j00lþjOnl j11lffiffi

2
p : After flipping the states of

the amplitudes in trap ‘On’, we can apply the algorithm15 (again using suitable
laser pulses) in this trap: jOff l j00lþjOnl jxylffiffi

2
p :The states of the atoms can be measured

efficiently using a state-selective fluorescence technique16, which scatters light
only from atoms in state j1l: But this measurement gives no signal if the output
of the algorithm is jxy ¼ 00l (that is, if the ME ¼ no. 1), and thus cannot
distinguish which trap the ions are in, leaving the state jOff l j00lþjOnl j00lffiffi

2
p : The

amplitudes in the two traps can then be coherently interfered by reversing
the amplitude-splitting procedure described above. The extension to high
efficiency interrogation can be accomplished by preparing the entangled state
cosvj00lþ sinvj11l (which only differs in applying the rotation R(2v) instead of
R p

2

� �
to the first qubit).
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