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The quantum search algorithm is a technique for searcNimpssibilities in onlyO(\/N) steps.
Although the algorithm itself is widely known, not so well known is the series of steps that first led
to it; these are quite different from any of the generally known forms of the algorithm. This paper
describes these steps, which start by discretizing ‘Siger’'s equation. This paper also provides

a self-contained introduction to quantum computing algorithms from a new perspectiveoo1©
American Association of Physics Teachers.
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[. INTRODUCTION at the same time with certain probabilities—it can be simul-
) ) taneously ON and OFF. Its specification requires us to
Consider the following problem from a crossword puzzle:gpecify the probabilities in all basis states. Further, as the
r nh.  (Solution—piranhi system evolves, the probabilities in the various basis states
) o ) . interact with each other in complicated ways. This already
You have an online dictionary with 1,000,000 words in gives some feeling of the complexity, and potential compu-
which the words are arranged alphabetically. You could progational power, of quantum mechanical systems.
gram it to look for the solution to the puzzle so that it typi- | order to harness the power of quantum mechanics, it is
cally solves it after looking through 500,000 words. It is Very necessary to know how the probabilities in the various states
difficult to do much better than this. But that is: only if you jnteract with each other. The way to describe these probabili-
limit you_rself toa classical computer. A quantum computeriies s in “wave”terms, by a quantity called the amplitude.
can be in multiple states at the same time and, by propefne amplitude is a complex number, with both a magnitude
design, can carry out multiple computations simultaneouslygnq 4 phase in each state. The specification of the amplitudes
In case the above dictionary were available on a quantuny each state is called superpositioror a state vector The
computer, it would be possible to carry out the search in only,yera|| probability in each state, just like the intensity of a
about 1000 steps by using the quantum search algorithm. \ave is given by the absolute square of the amplitudes in
~ The quantum search algorithm has evoked considerabl@at state. For example, consider a four state system. Denote
interest among both physicists and computer scientists. Thige pasis states of the system By, |1), |2), and|3). Let the
was the first important application of quantum CompUt'”gamplitudes in these states Bel, %, and —2%, respectively.

that did not require the problem under consideration to havéhe probability in each of the four statestishe state vector
a structure and was hence applicable to several differeng

types of problems in both physics and computer science.
Also the framework was simple and general and could be

extended to different problems and different physical situa- 1/2
tions.

It is unusual to write a paper listing the steps that led to a 1/2
result after the result itself is well known. This is usually of 1/2
historical interest and better left to the philosophers of sci- -1/2

ence. In this case, more than five years after the initial algo-
rithm was invented, the series of steps that led to it are still
not known even by the scientists in the field. | recently pre-which is also denoted a30)+ 3/1) + 3/2)— 3/3). Note that
sented an qu.tlin()e of this story to a small gathering of theothe probabilities in each state would stay the same even if the
retical phys_|C|st§_‘. After seeing the interest it inspired, | de- state vector wereb|0) + 4| 1) + 42)+ 4[3); however, this
cided to write this more complete version. state vector is very different and the evolution of the state
vector in time would now be very different. In fact, the
whole reason for describing the system in terms of ampli-
The quantum search algorithm needs only a small fractiofudes is that the evolution is better described in terms of
of the conceptual machinery of quantum mechanics. Thigmplitudes as opposed to probabilities.
section briefly mentions the concepts needed to understand Any physical process, whether classical or quantum me-
the quantum search algorithm—it is by no means a comprechanical, must evolve in time in a way so that it conserves
hensive review of quantum mechanics. the total probability. In Markov processes this requirement
A classical binary switch can be either ON or OFF. Theleads to the condition that the entries in each column of the
two possibilities, ON/OFF are referred to basis stateor  State transition matrix sum to one. For quantum mechanical
sometimes just astatesfor short. The switch can be com- processes, this requirement translates into the condition that
pletely described by specifying which basis state it is in—the state transition matrix hanitary, i.e., the columns of the
whether it is ON or OFF. On the other hand a quantumstate transition matrix be orthonormal. An example of a 4
mechanical system is associated with all possible basis states4 unitary state transformation matrix is

A. Quantum mechanics
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1 1 1 1 can be implemented quantum mechanically, which makes it
possible to design a circuit that will output any desired Bool-
l 11 -1 -1 ean function. This is the following set of three transforma-
2(1 -1 -1 1} tions.

1 -1 1 -1 (i) NOT—a one-input one-output gate: Since the input and

output are both qubits, this gate transforms a two-state sys-
This transforms}|0) + 3| 1)+ 3|2) + 3|3) into |0) and it trans-  tem into another two-state system. The transformation swaps
forms  30)+3|1)+1[2)—43) into 0)+%1)—%2)  [0) and|1). In matrix terms this is described by the transfor-
+13). Even though the initial superpositions had the saménation

probabilities in each state, after the quantum mechanical g 1
transformation the probabilities in the two cases become
very different. 0

. The tran_sformatipn of amplitudes by any qnitary operatiorj\,\,here the basis states g8 and|1), respectively.

is always linear. It is hence enough to specn‘y how the baS|§ (i) CNTRL-NOT—a two-input two-output gate: The in-
states are transformed. The transformation of any superposiyt and output both consist of two qubits—hence this is a
tion can be obtained from this simply by summing the transyansformation from one four-state system to another four-
formations of each of the components, i.e.Mfbe any op-  giate system. It transforni80) into [00); |01) into [01):; [10)

erator,|A) and |B) be any two state vectors, theM(a|_A) into |11); |11) into |10). The transformation matrix for this is
+B|B))=aM|A)+ BM|B). This is called thesuperposition

principle and is the reason that in Dirac notation a superpo- [1 0 0 O
sition is denoted as an appropriately weighted summationof (g 1 0 0
the components. ,
0 0 01
B. Quantum computing 0 010

Just as classical computing systems are synthesized out Where the basis states a@9), |01), [10) and|[11), respec-
two-state systems called bits, quantum computing systemi&/ely- The name CNTRL-NOT arises since the first bit acts
are synthesized out of two-state systems catfatlits The &S acontrol for the second—ifitis a 1, it swaps 0 and 1 in
difference is that a bit can be in only one of the two states af’€ Second bit. It must be emphasized that this simple-
a time, on the other hand a qubit can be in both states at tH@inded verbal description only holds for the basis vectors.

same time. For example, consider two qubits, each in thd he transformations of superpositions are more complicated
superposition: ’ ’ and can only be obtained by the state transition matrix de-

scribed above.

1 1 (i) CNTRL-CNTRL-NOT—a three-input three-output
E|0>+ E|1> : gate: The input and output both consist of three qubits—
hence this transforms one eight-state system to another. It
This is represented as the tensor product: transformg000) into |000); |002) into |001); |010) into |010);

|011) into |011); |100 into |100); |101) into |101); [110) into

1 1 1 1 |112); [111) into |[110). Just like(i) and (ii), this too can be

—0)+ —<[1)|e| —|0)+ 1) : i : denti

ol ) ) ) listed out as an & 8 matrix transformatiofan 8x 8 identity

) ) matrix with the last two columns swappedThe name

or eqluwalently we have a lfour-state ?ystem IN & SUPErPOSCNTRL-CNTRL-NOT arises since the first two bits act as
tion: 3/0)®|0)+30)®[1)+3[1)®[0)+ 3[1)®[1), whichis  control bitsfor the third—if both are 1, it swaps 0 and 1 in
also represented a$00)+3|01)+3|10)+3|11). This is an  the third bit. As mentioned before, this simple verbal de-
example of a superposition thean be factored into smaller scription only holds for the basis vectors—for superposi-
systems. However, most superpositions, such ;H30) tions, we need to use the state transition matrix.
+3/01)— 3|10y + 3|11y, cannotbe represented as a product The unitarity of these three operations is easily verified by
of smaller superpositions. The general description ofnan noting that the column vectors of the transformation matrices
qubit system(which is a 2' state systemrequires us to are orthonormal(this is_clearly t_he case since the gates
specify the amplitude in each of 2tates, i.e., 2quantities; ~Merely permute the basis statedsing these three gates it is
whereas to specify a classigabit system requires justbits ~ Possible to design a circuit such that one of its outputs is any
of information. specified Boolean functiof(x) (Fig. 1 on next page This

Interesting and paradoxical quantum mechanical effect§eeds approximately the same number of gates as would be
arise in systems that cannot be factored into smaller systemigquired in a classical implementation using NANDs and
Such systems are called entangled. Quantum computatiddORs. Such a circuit maps a superposition that is concen-
algorithms, such as quantum search, make use of entanglated in any single input basis staig,to another superpo-
ment to devise fast algorithms. sition concentrated in a single output basis st§#g. Trans-

In order to design quantum computing systems, we need formations of general superpositions are obtained from the
basic set of building blocks analogous to the NAND andsuperposition principle. Note that to synthesize Boolean
NOR gates that are used to build classical digital systemdunctions quantum mechanically, we need three basic gates
Unfortunately, by writing out the transformation matrices for whereas in the classical case we needed justiN¥iND and
NAND and NOR, it is easily seen that they are not unitaryNOR).
and hence cannot be implemented quantum mechanically. In order to develop more powerful quantum mechanical
Fortunately, there exists a set of unitary transformations thalgorithms, in addition to these three gates we need some

53]
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BN I f(x) is 1. Given such a quantum mechanical black box, a

X —2 B — X selective inversion transformation can be realized by using
T f(x) T this box along with some of the gates discussed so far—this
is described in the circuit in Fig. 6n the Appendix.
f(x)l 0/1 C. Quantum search
As mentioned in the Introductio(Bec. ), in the quantum

search algorithm we are given a certain condition and we
need to find out which one of the specifiddpossibilities
satisfies this. This problem can be represented as a binary
function f(x) defined overN basis stategdenoted byx),

operations that are essentially quantum mechanical and haéX) is known to be 1 at a single value af sayt (t for
no classical analog, i.e., the entries of the state transitioffrgel—the goal is to find. Without any other information
matrix are not all 0’s and 1's. Two such operations that weabout the structure df(x), it would take an average ®/2
need in the quantum search algorithm are the WH transforfunction evaluations to solve this problem on a classical
mation operation and the selective inversion operation, theseomputer. The author found a quantum mechanical algo-
are discussed in the following paragraphs. rithm that took onlyO(y/N) steps:

A basic operation in quantum computing is the operation This was of considerable interest since, by properly defin-
M performed on a single qubit—this is represented by théng the functionf(x), a number of different problems, such

Fig. 1. A quantum mechanical “black box” that evaluatex).

following matrix: as the crossword puzzle mentioned in the Introduct®ec.
171 1 I), could be cast in this form. All that is needed is a quantum

= } mechanical box for evaluating the functié(x). By putting
v211 -1 a small amount of hardware around this box it is possible to

M is unitary since the columns are orthonormal. Also notesea_rChN possibilities in or_1IyO(\/_N_) SteF_’S- The on_ly infor-_
thatMM =1 . If we consider am qubit system, we can per- matlon abouf (x) needeq is thatitis a blnary functhn that is
form the transformatiorM on each qubit independently in either 0 or 1 and that it is 1 at only a single point in the
sequence, thus transforming the state of the system. A sy§omain. . _ -

tem consisting oh qubits hasN=2" basis states, so the state _ The quantum search algorithm consisted,df repetitions
transition matrix representing this operation is of dimensiorPf the operator-I,WI¢W starting with the basis state where
2"x 2", Consider the case when the starting state is one ddll qubits are 0—this basis state is denoted by\denotes
the 2" basis states, i.e., it is described by an arbitrary stringhe Walsh—HadamaréwH) transformation,l; denotes the
of n binary digits composed of some 0’s and some 1's. Theselective phase inversion of the target statgere the func-
result of performing the transformatidvi on each qubit will  tion f(X) evaluates to 1,5 denotes the selective phase inver-
be a superposition of states consisting of all possiblet g5y of 0 This creates a superposition all of whose ampli-

binary strings with the amplitude of each state beingy e s in the basis stateA measurement then immediately
+2-("2)_ This transformation is referred to as the WH trans-jgentifiest.
formation and denoted bW. Note that sinceMM =1, it It is easily possible to carry out the algebra and verify that
follows that WW=1. Also note that, sincé=M", it fol-  the evolution of the system is such that in every repetition of
lows thatW=WT. A generalization of this is the quantum —1oWI;W, the amplitude in the state rises byD(1//N).t
Fourier transformation, which leads to applications such aginfortunately, this calculation does not give much insight
factorization. into how such an algorithm could have been first invented.
The other transformation that we need is the selectiverhe algorithm was first presented at a conference in terms of
phase inversion of the amplitude in certain marked states diffusion transfornf, which is similar to the way it was
The transformation matrix describing this for a four-stateinvented, but the significance of this was not usually appre-
system with selective phase inversion of the second state igiated. Later on, there were more interpretations: inversion

about average, rotation in a two-dimensional Hilbert space,
1 0 0 O i

antenna array.All of these describe some aspect of the al-
0 -1 00 gorithm, but they are very different from the way it was
o o 1 ol initially invented.
0 0 01 Il. SCHRO DINGER’S EQUATION

This is clearly unitary. Unlike the WH transformation, in this

case, the probability in each state stays the same. Quantum mechanics was historically developed in the

context of atomic physics. One of the first successful descrip-
tions of atomic phenomena was Soflimger's equation,

. . : — . Svhich was discovered by Erwin Scltinger in 1926 and to
amplitude in the set of basis states, for which f(X) g day continues to be the most commonly used description
=1—provided we are given a quantum mechanical blackor nonrelativistic phenomena. This was the aspect of quan-
box that evaluates the functidifx) for any specifiek such  tum mechanics that | was familiar with when | started inves-
as that in Fig. 1. Note that we do not need to know in adtigating quantum algorithms in 1995.

vance whichx makes the function equal to 1—all we need is In Schralinger's framework, the basis states are continu-
a circuit which for an arbitrarx, can tell us whether or not ous and uniformly distributed in space. Instead of the dis-
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crete statef)) and|1), there is a continuum of states denotedits two adjacent neighbors on an infinitesimal grid of size
by |x), wherex is a continuous variable. The state vector isthen the derivatives in Schiinger’'s equation can be written
specified in the form of a functiog(x) which denotes the as:

amplitude in the statg) (this function is usually referred to 9 P(x,t+dt) — p(x,t)

as a wave function Schralinger's equation describes the a—tw(x,t)E

evolution of the wave functiog(x) in time for actual physi- dt
cal systems which are described by potential functions. 92 P(x+dx,t) + P(x—dx,t) —24(x,t)
Let us begin with Schidinger's equation in one dimen- 2 VD= (dx)2 :

sion (leaving out the scaling constants in order to focus on o ]
the nature of the equatian It simplifies notation if we define a constasitsuch thatdx

= dt/e. Substituting the definitions for the derivatives into
. d _ Schralinger’s equation, we obtain the evolution of the wave
|5t P60 == 5z b HVOO YD), function with time, ie., @(xt+dt)=(1—iV()dt
=2ie) (X, t) +ie(Pp(x+dx,t) + p(x—dx,t)).

In Schralinger’s equation there is a continuum and there-

2

which may be written as

J 5P . fore an infinite number of states; however in order to dem-
T PG =T =5 g (X D) =IV) $(X, ). onstrate the principle, assume just a four-state system where
the states are arranged in a loop with diffusion from each
This describes the evolution of the wave functig(x,t) in state to its two adjacent states. Denote the four states by
the presence of a potential functiovi(x). X1,X2,X3 andx,. [ #(X,t)] is a column vector with four com-
This is analogous to the diffusion equation with absorp-ponents. Then in accordance with Sdlirmer’'s equation,
tion. If we break up the evolution into infinitesimal time the evolution for a timedt may be represented as a state
steps of sizadt and imagine that each point is connected tomatrix transformation as follows:

1-1V(x,)dt—2ie ie 0 ie
ie 1-iV(xy)dt—2ie ie 0
Lvxt+dy]= 0 io 1-iV(xg)dt—2ie o Lvx 0]
ie 0 ie 1-iV(x,)dt—2ie

It may be verified that this is a unitary transformation in the limit of infinitesidtednd infinitesimale, i.e., the magnitude of
each column vector is+O((dt)?)+O(e?) and the dot product of any two column vector€dg(dt)?) + O(&?).
The above state transition matrix may be represented approximately as follows:

[4(x,t+dt)]=DR{4(x,1)],

where
1-2ie ie 0 ie
ie 1-2ie ie 0
D= 0 ie 1-2ie ie
ie 0 ie 1-2ie
exp(—iV(x,)dt) 0 0 0
0 exg —iV(xy)dt) 0 0
R= 0 0 ex—iV(xz)dt) 0
0 0 0 exfg —iV(x,)dt)
|
The representation is accurate up to ter@(dt)?) T

+0(&?). Also note thatR is exactly unitary, butD only [w(x,r)]=(DR)---arepetitions--(DR)(DR)(DR)

approximately so, up t®(&?).
The sum of the entries in each columnDfis unity so it X[(x,0)].
is like a Markov diffusion process with imaginary state tran-
sition probabilities(D is short fordiffusion transform This Note thatD and R do not commute, which is why in the
Markov diffusion feature will be made use of later in the equation above they have to be carefully listed out in the

design of the algorithm. indicated order. In theoretical physics this technique for
Repeating the infinitesimal state transformation, we obtairbuilding up finite transformations out of infinitesimal non-
the transformation for finite times: commuting operations is called Trotter's formula.
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[Il. INFINITESIMAL QUANTUM SEARCH Using such a phase rotation transformatiBnyve design an
. . o . algorithm using the analogy with Schiinger’s equation.

By analogy with a classical situation, we know that if we = “cnsider the same sequence of infinitesimal transforma-
start with a uniform superposition in a line and let it evolve 4515 used to represent the evolution of a system in the pres-
in the presence of a potential function, it will gravitate t0- gnce of g potentiallast equation of Sec. )l In the design of
ward points at which the pot'entlal IS Iow@ee Fig. 2‘. a quantum algorithm an immediate improvement is obtained

Therefore, in order to design an algorithm that will reachy, ‘qticing that we can connect each state to all other states,

certain marked states, one can give these marked state§ieaq of just to states that are adjacent on the grid, thus
lower potential and then implement the same iterated tra”s's'ynthesizing an algorithm of the type

formations obtained from the evolution of ScHiager's

equation. We assume a single marked state. Assume we do _ _
not know which one this is, but we have a means of selec- L[#(X,7)]=(DR)- - -(DR)(DR)(DR)[¢(x,0)],
tively rotating its phase by any desired amodifie imple-

mentation of such a transformation is discussed in Seg. IV where

F(1—iNeg) ie ie ie T F 1 0 0O --- 07

ie (1—iNeg) ie ie 0 exgiy) 0 --- 0

D= ie ie (1—iNg) --- ie ., R=| O 0 1 - 0
L ie ie € -++ (1—iNe) | | O 0 o - 1]

For anN-state system, in order for the terms in each row tothe transfer in the two directions cancels out, the only net
sum to unity, the diagonal terms & should be (:i(N  exchange is between the state with the rotated phase and
—1)e). However, for simplicity, we write this as (1 e€ach of the other states.
—iNeg). ForN large, the error due to this is negligible. The increase of amplitude in the marked state dub te

Note that according to the state-transition transformatiodaximum wherR initially rotates its phase by/2—the in-
derived from Schidinger's equation, positive values of  Crease of amplltude |s_then proportionaktas shown in Fig.
correspond to negative potentials. The question is whethet- Let the amplitudes in the unmarked and marked states be
such a series of transformations widally drive the system K/VN andiK/\N, respectively. Initiallyk andK are both 1
into the marked state and if so how largend y should be  but as the amplitude in the marked state increasesses to
and how many times théDR) operation has to be repeated. O(\/N) andk shrinks.

Assume[ ¢(x,0)] to be the uniform superposition, thatis, Summing the transfers between each of the unmarked
a wave function with equal amplitudes in all states. The efstates and the marked state, it follows that aBethe am-
fect of R is to rotate the phase of the target statejbyNote  plitude in the marked state becomes
that the sum of entries in each columnfis unity, hence
the operatiorD is analogous to a Markov diffusion process iK ik K
with a transition probability from any state to any other state —+ —Ng+ —Ns¢
beingie. This analogy simplifies the analysis and design of YN YN VN
the algorithm. It immediately follows that there is no net
exchange between states that have the same amplitude sireed the amplitude in each of the other states becomes

KoKk
o - ~-O W WS W

Assumingk to be of order 1(as is the case initially it
follows that there is a net change of magnitude of approxi-

? t i j T t i ? 1 t j 1 t i j T t is_ . The #lt of this amplitude denotes that its phase
- - - - — N P -7 A K /<is rotated relative to other amplitudes. )
| R IO

Fig. 2. Just as the balls roll down into regions of lower potential energy, aFig. 3. The diffusion operatioiD) results in a net transfer of amplitude
uniform quantum superposition evolving under Schinger’s equation will proportional toe from each state to the marked state whose phase has been
gravitate toward lower potential energy regions. rotated byR. There is no net transfer between states with equal amplitude.
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mately Ne/+/N in the amplitude of the marked state. Also, a b b - b

the phase of the marked state gets rotated by approximately b a b b
Ne, the magnitude and phase in the unmarked states stay ~_| , p a b
approximately the samek, the magnitude of the amplitudes T
in the unmarked states, is easily estimated by a conservation b b b a

of probability argument, i.e., the quantif+K?/N is the
total probability and is always 1. Therefore, as longkas wherea andb are complex constants to be determined based
<N/2, k lies in the range 12k<1.) on t_he unit_arity c_ondi_tion. Note that the structure_of t_his ma-
The previous paragraph describes how it is possible t&ix immediately implies that the sum of the entries in each
obtain a transfer into the marked state even without knowingolumn be expg) whereX is real. (If N had an imaginary
which one it is, provided we can somehow rotate the phaséomponent, it would imply that the sum of the amplitudes
of the marked state and subsequently apply a diffusion opvyould increase or decrease exponentially as the wave _func-
eration, D, that transfers amplitude proportional te be- tion evolved) Therefore by performing a phase rotation
tween any two states. The analysis of the previous paragragfansformation orD we can always transform it to a form
suggests that the maximum transfer is achieved by keepingWhere the sum of the entries in each column is 1. As in Sec.

as high as possible, which might accomplish the entire trand!!; this will help in the design of the algorithm.

matrix D, as defined in Sec. II, is no longer unitary for large column vector ofD is unity, gives Eq.(1) below and the
&. If we look at the columns, their dot product@Ne2) and c_ondmon that any two column vectors & be orthogonal
the sum of the squares of magnitudes in each column is Yi€!ds EQ.(2),
+0(N2£?). D is therefore only approximately unitary pro- la]®+(N—-1)[b]?=1, 1)
vided e <1/N. o _ 2 Realab*)+(N—2)[b|?=0. 2
The transfer of amplitude into the state with the rotated
phase was estimated Bi://N. Assuminge =O(1/N), this
transfer become®(1//N). The rotation of the phase of the
marked state which walde, becomes of order 1. If we ad-
just the R matrix to unrotate the phase by this precise
amount, then we can repeat tie operation to obtain an
additional transfer. It follows that i©(1/N) repetitions of
the (DR) cycle, the amplitude and thus probability in the
marked state will become a quantity of order 1.

The case previously considered in Sec. BI=1—iNg;
b=ig) satisfies these two conditions approximately provided
£<1/N. We would like to makgb| as high as possible in
order to attain the maximum transfer in each step. This sec-
tion shows thatb| can be made as high as\e/

There is some freedom in the choiceaofindb since there
are four variablegthe real and imaginary portions afand
b) and only two equations. One of the degrees of freedom
represents the fact that if we have any solutianb) where
a and b are complex, therja exp(¢),bexp( is also a
IV. AN EXACTLY UNITARY DIFFUSION solution for any rgalzz). Thelriefore?(v:/ﬁe)) canpc(t?())(])se the phase
TRANSFORMATION of one of the variables arbitrarily, say we choas® be real.

In Sec. Ill, there is the tricky matter of precisely how high Equations(1) and(2) then become
e can be. The issue arises from the fact that the mairiz ar2+(N_l)(br2+ bi2)= 1, (1a)
unitary only up toO(N?e2) and therefore: is required to be 5 2
much smaller than N. The number of steps required by the 2a;b, +(N—2)(br+b7)=0. (28
algorithm is O(y/N/Ne), which can therefore at best be a Substituting fora, in terms of|b|? from (18 and (23 and
large constant timegN—the precise scaling factor will de- squaring both sides, we obtain
pend on precisely how muchis smaller than M. (N—=2)?|b|* 5 X

We could carry out a perturbation to makeunitary to W:4br<4|b| :
higher powers o€, thus making it possible to makehigher.

Instead, this section wiltreate a diffusion matrix that is This leads to the boundb|<2/N, which implies |b,|

exactly unitary. <2/N. Trying outb,=2/N, b;=0 indeed gives a solution
Consider with a= —1+2/N andD becomes
|

B 14 2 2 2 2 7
N N N N
2 1 2 2 2
N N N N
D= 2 2 14 2 2
N N N N

2 2 2 1 2
Y N N N/
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Note that as mentioned in the beginning of this section, theude to the amplitude transferred from the marked state, the
modulus of the sum of the entries in each column is indeeémplitude in each of the other states becomes
1; hence it too may be viewed as a Markov process with
transition probabilityfrom any state to any other state being k 2 ( k

2K
2/N. This fact will help in the design of the quantum search =" N| /N NN’
algorithm in Sec. V. VN N/ NYN

which isk/\/N—O(1/N). Therefore the net result of the op-
V. THE QUANTUM SEARCH ALGORITHM eration is to change the amplitude in the marked state from
It is easily seen that the maximum transfer into the marked- K/\N to (K+ 2k)/\/N while leaving the amplitudes in the
state that can be accomplished by the mafixhappens unmarked states approximately the same.
when the phase of the marked state is rotated bglative to After this, if the amplitude in the marked state is inverted
the other states. This is illustrated in Fig. 4; contrast this withby R, the transformatiorD can be used again to further in-
the situation in Sec. Ill where the maximum transfer wascrease the magnitude byk2/N. As in Sec. Ill,k stays vir-
attained when the phase of the marked state was rotated Rya|ly unaltered and is of order 1; it follows that ®(/N)

2. . . repetitions of the(DR) cycle, the amplitude in the marked
Assume the amplitude in the marked state to-hi¢/ /N, state gets boosted to a quantity of order 1.

whereK <N, and the amplitude in each of the other states The algorithm can hence be described by the following
to bek/\/N wherek<1. As a result oD, as shown in Fig. 4, sequence of transformations:

there is a net transfer of
[Yana(X¥)]=(DR) ... (DR)(DR)(DR) [ iu(X)].

VN reps

N2
“N

k K
—_ + —_

YN YN Here[ ¢ini(X)] is the uniform superposition with equal am-

_ o _ litude of 1A/N in all N states and ¢,u(X)] is a superpo-
into the marked state. When we add the initial amplitude Ofstion which has an amplitude of order 1 in the marked state
—KI/yN, the total amplitude in the marked state af@r and small, uniform amplitudes in all other states. The matri-
becomes K+ 2k)/«/N. Similarly, adding the initial ampli- cesD andR are summarized below:

B 1 2 2 2 2 7
N N N N
2 2 2 2 B -
& 142 < & 1 0 O 0
N N N N -1 0
D= 2 2 1+ 2 2 , R=[ 0 0 1 0
N N TN N
| 0O 0 O 1]
2 2 2 1+ 2
[N N N TN/
|
VI. SYNTHESIZING D r1 1 1 --- 17
. . . . . 1 1 1 1
Section V described the matrix transformations which, 2
when carried out, result in a significant amplitude being obD=-wW/| W| |- N 1 1 1 1 wW|w
tained in the marked state. These wdl& N matrix trans-
formations and we still need to show how to synthesize these
by means ofO(logN) two-dimensional rotations and one- 11 1 - 1]
dimensional reflections of the type discussed in Sec. 1B _ -
since these are the technologically feasible quantum comput-
ing operations.
By using the fact thaWW=1 with W as defined in Sec.  _ _\y| |- EW 1 1 1 - 1|w|w (3
I B, the transformation matri as defined at the end of Sec. N
V can be written in the following formW(WDW)W. Sub-
stituting for D from Sec. V, it follows that L1 1 1 - 1]
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Fig. 4. The diffusion transformatiofD) results in a transfer of amplitude to
the selected state whose phase is rotatedrhblyy the R transformation.
There is no net transfer between states with equal amplitude.

Assume that the states are encoded so that the first state is

the one with all qubits in the O statas mentioned before,
this state is denoted by)0 Then since

1
MI0y= = (l0)-+11)),

it follows that W transforms Oto a superposition with equal
amplitudes in allN states, i.e.,

1 1

0 1
1

w o|=—|1
.| VN

0 1

SinceWW=1, it follows, by premultiplying both sides by,
that

1 1
1 0
wl 1|=JN| O
1 0
Therefore,
ri1 1 1 - 17
1 1
w1 1 1 -+ 1]|W
L1 1 1 1]
r1 1 17
=JyN[ O O 0w
| 0O 0 O 0 |
r1 0 O 0 1
=N| O 0 O 0 (3b)
| 0O 0 O 0 |

Substituting(3b) in (3a):
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1 0 O 0 7
0 0 O 0
D=-W| 1-2 0 0 O 0 w
L 0 0 O 0
-1 -
0 0 0
=-wj O 0 1 - O0]|w. (30
L 0 0 0 - 1]

Equation(3c) is written asD = —WI,W, wherely denotes
selective inversion of the Btate.

VII. CONCLUDING REMARKS

This paper has outlined the steps that went into the devel-
opment of the quantum search algorithm. As with many new
scientific developments, the steps are far from rigorous. Nev-
ertheless, | have found these insights helpful in developing
the search algorithm and its extensions.

There have been several analyses of the search algorithm
but there are still only partial answers to some basic ques-
tions which seems to suggest that our understanding of this
algorithm is still limited. The first question idV/hat is the
reason that one would expect that a quantum mechanical
scheme could accomplish the search if\@) step® It
would be insightful to have a simple two-line argument for
this without having to describe the details of the search al-
gorithm.

It has been proved that the quantum search algorithm can-
not be improved at all, i.e., any quantum mechanical will
need at leasD(\/N) steps to carry out an exhaustive search
of N items*® Why is it not possible to search in fewer than
O(yN) step® The arguments used to prove this are very
subtle and mathematical. What is lacking is a simple and
convincing two-line argument that shows why one would
expect this to be the case.
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APPENDIX

The quantum search algorithm is based on the assumption
that it is possible to selectively invert the amplitudes in a

i X (n qubits) X (n qubits) a

5| 2P 0/1 Output | 4

@ B (1 qubi B XOR f{x ~c

7 1 g qubit) NOT fx) )
7'2'[—1]

Fig. 5. The above quantum mechanical circuit selectively inverts amplitudes
of precisely those basis states where the functipf) evaluates to 1.
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basis state where the functidiix) evaluates to 1. As men- perposition, the amplitude of precisely those basis states are

tioned in Sec. 1B, such a circuit can be designed, providedelectively inverted for which the functiof(X) is 1.
we are given a quantum mechanical circuit to evaluate the

function f(x) in any specified basis state (Fig. 1). The 3A preliminary version of this paper was presented at the Winter Institute

selective inversion circuit is shown in Fig:*8ncidentally, | on the Foundations of Quantum Theory, SN Bose Center, Calcutta, India,
found out about this circuit several months after developing January 2000.
the search algorithm. PElectronic mail: lkgrover@bell-labs.com

To analyze schematic quantum circuits, such as in Fig. 5,}- K. Grlf‘,{egt:Q“"’g‘t“mLMe;gagicssgg'pgzig iggmhi”g fl(’rbf‘ needle in a
one examines the transformation of the input basis states—hﬁﬁéa;aée_htt‘{’)s_/'/wvs\)’v' be‘flt_tlabs( c)ém /usgrnkg(rove?/’ avallable on my
ang tl’;eg by ItXe Eupefl}pOSItlon principle as _d_escnbedbat tEQA fast quantum mechanical algorithm for database search, Proceedings of
en. 0 ec' ’.t ee e.Ct on any supgrpqsmon .Can € 0D~ 5gth Annual ACM Symposium on Theory of Computit§TOO, 1996,
tained. It is easily seen in the above circuit that if for some

. ) - g pp. 212-219, available on my home page-http://www.bell-labs.com/user/
n-qubit input basis statg, the output of thef(X) gate is 1, Ikgrover/.

the ancilla qubit superposition is transformed from g) to SRichard Jozsa, “Searching in Grover's Algorithm,” http://xxx.lanl.gov/
(B, @). If ais 1V2 andB is —1W2, something very interest-  abs/quant-ph/9901021.

ing happens. If the output of tHéX) gate is O, the ancilla bit  “M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum
superposition stays unchanged; whereas if the output of thesearching,” Fortsch. Physt6, 493-506(1998, http:/xxx.lanl.gov/abs/
f(X) gate is 1, the ancilla qubit superposition is transformed aquant-ph/9605034.

from (1/‘/2, _1/‘/2) into (_1/‘/2 1/\/2). This is equivalent to 5C. Zalka, “Grover’s quantum searf:hing algorithm is optimal,” Phys. Rev.
Changing the sign of the amplitude. Thus in an;qubit Su- A 60, 2746—-2751(1999, http://arXiv.org/abs/quant-ph/9711070.

r, 0, ¢

Irresponsible improvements in notation have already caused enough trouble. | don’t know who
first thought of using in spherical coordinates to mean azimuth instead of colatitude, as it almost
universally did and still does in physics and in advanced mathematics. It's superficially a relason-
able convention because it makéshe same as in plane polar coordinates; however, girise
different anyway, that isn't much help.

Ralph P. Boas, Jr., “Can We Make Mathematics Intelligible?,’Lion Hunting & Other Mathematical Pursuitedited by
Gerald L. Alexanderson and Dale H. Mugl@athematical Association of America, Washington, 199%. 233-234.
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