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The quantum search algorithm is a technique for searchingN possibilities in onlyO(AN) steps.
Although the algorithm itself is widely known, not so well known is the series of steps that first led
to it; these are quite different from any of the generally known forms of the algorithm. This paper
describes these steps, which start by discretizing Schro¨dinger’s equation. This paper also provides
a self-contained introduction to quantum computing algorithms from a new perspective. ©2001

American Association of Physics Teachers.
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I. INTRODUCTION

Consider the following problem from a crossword puzz

I I rI nhI ~Solution—piranha!.

You have an online dictionary with 1,000,000 words
which the words are arranged alphabetically. You could p
gram it to look for the solution to the puzzle so that it typ
cally solves it after looking through 500,000 words. It is ve
difficult to do much better than this. But that is: only if yo
limit yourself to a classical computer. A quantum compu
can be in multiple states at the same time and, by pro
design, can carry out multiple computations simultaneou
In case the above dictionary were available on a quan
computer, it would be possible to carry out the search in o
about 1000 steps by using the quantum search algorithm

The quantum search algorithm has evoked consider
interest among both physicists and computer scientists.
was the first important application of quantum computi
that did not require the problem under consideration to h
a structure and was hence applicable to several diffe
types of problems in both physics and computer scien
Also the framework was simple and general and could
extended to different problems and different physical sit
tions.

It is unusual to write a paper listing the steps that led t
result after the result itself is well known. This is usually
historical interest and better left to the philosophers of s
ence. In this case, more than five years after the initial a
rithm was invented, the series of steps that led to it are
not known even by the scientists in the field. I recently p
sented an outline of this story to a small gathering of th
retical physicists.a! After seeing the interest it inspired, I de
cided to write this more complete version.

A. Quantum mechanics

The quantum search algorithm needs only a small frac
of the conceptual machinery of quantum mechanics. T
section briefly mentions the concepts needed to unders
the quantum search algorithm—it is by no means a com
hensive review of quantum mechanics.

A classical binary switch can be either ON or OFF. T
two possibilities, ON/OFF are referred to asbasis statesor
sometimes just asstatesfor short. The switch can be com
pletely described by specifying which basis state it is in
whether it is ON or OFF. On the other hand a quant
mechanical system is associated with all possible basis s
769 Am. J. Phys.69 ~7!, July 2001 http://ojps.aip.org/aj
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at the same time with certain probabilities—it can be sim
taneously ON and OFF. Its specification requires us
specify the probabilities in all basis states. Further, as
system evolves, the probabilities in the various basis st
interact with each other in complicated ways. This alrea
gives some feeling of the complexity, and potential comp
tational power, of quantum mechanical systems.

In order to harness the power of quantum mechanics,
necessary to know how the probabilities in the various sta
interact with each other. The way to describe these proba
ties is in ‘‘wave’’terms, by a quantity called the amplitud
The amplitude is a complex number, with both a magnitu
and a phase in each state. The specification of the amplitu
in each state is called asuperpositionor a state vector. The
overall probability in each state, just like the intensity of
wave, is given by the absolute square of the amplitudes
that state. For example, consider a four state system. De
the basis states of the system byu0&, u1&, u2&, andu3&. Let the
amplitudes in these states be1

2,
1
2,

1
2, and 21

2, respectively.
The probability in each of the four states is1

4, the state vector
is

F 1/2
1/2
1/2

21/2
G

which is also denoted as12u0&1 1
2u1&1 1

2u2&2 1
2u3&. Note that

the probabilities in each state would stay the same even if
state vector were1

2u0&1 1
2u1&1 1

2u2&1 1
2u3&; however, this

state vector is very different and the evolution of the st
vector in time would now be very different. In fact, th
whole reason for describing the system in terms of am
tudes is that the evolution is better described in terms
amplitudes as opposed to probabilities.

Any physical process, whether classical or quantum m
chanical, must evolve in time in a way so that it conserv
the total probability. In Markov processes this requireme
leads to the condition that the entries in each column of
state transition matrix sum to one. For quantum mechan
processes, this requirement translates into the condition
the state transition matrix beunitary, i.e., the columns of the
state transition matrix be orthonormal. An example of a
34 unitary state transformation matrix is
769p/ © 2001 American Association of Physics Teachers
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2 F 1 1 1 1

1 1 21 21

1 21 21 1

1 21 1 21

G .

This transforms1
2u0&1 1

2u1&1 1
2u2&1 1

2u3& into u0& and it trans-
forms 1

2u0&1 1
2u1&1 1

2u2&2 1
2u3& into 1

2u0&1 1
2u1&2 1

2u2&
1 1

2u3&. Even though the initial superpositions had the sa
probabilities in each state, after the quantum mechan
transformation the probabilities in the two cases beco
very different.

The transformation of amplitudes by any unitary operat
is always linear. It is hence enough to specify how the ba
states are transformed. The transformation of any superp
tion can be obtained from this simply by summing the tra
formations of each of the components, i.e., ifM be any op-
erator, uA& and uB& be any two state vectors, then:M (auA&
1buB&)5aM uA&1bM uB&. This is called thesuperposition
principle and is the reason that in Dirac notation a super
sition is denoted as an appropriately weighted summatio
the components.

B. Quantum computing

Just as classical computing systems are synthesized o
two-state systems called bits, quantum computing syst
are synthesized out of two-state systems calledqubits. The
difference is that a bit can be in only one of the two state
a time, on the other hand a qubit can be in both states a
same time. For example, consider two qubits, each in
superposition:

S 1

&
u0&1

1

&
u1& D .

This is represented as the tensor product:

S 1

&
u0&1

1

&
u1& D % S 1

&
u0&1

1

&
u1& D

or equivalently we have a four-state system in a superp
tion: 1

2u0& ^ u0&1 1
2u0& ^ u1&1 1

2u1& ^ u0&1 1
2u1& ^ u1&, which is

also represented as12u00&1 1
2u01&1 1

2u10&1 1
2u11&. This is an

example of a superposition thatcan be factored into smalle
systems. However, most superpositions, such as1

2u00&
1 1

2u01&2 1
2u10&1 1

2u11&, cannotbe represented as a produ
of smaller superpositions. The general description of an
qubit system~which is a 2n state system! requires us to
specify the amplitude in each of 2n states, i.e., 2n quantities;
whereas to specify a classicaln bit system requires justn bits
of information.

Interesting and paradoxical quantum mechanical effe
arise in systems that cannot be factored into smaller syste
Such systems are called entangled. Quantum computa
algorithms, such as quantum search, make use of enta
ment to devise fast algorithms.

In order to design quantum computing systems, we nee
basic set of building blocks analogous to the NAND a
NOR gates that are used to build classical digital syste
Unfortunately, by writing out the transformation matrices f
NAND and NOR, it is easily seen that they are not unita
and hence cannot be implemented quantum mechanic
Fortunately, there exists a set of unitary transformations
770 Am. J. Phys., Vol. 69, No. 7, July 2001
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can be implemented quantum mechanically, which make
possible to design a circuit that will output any desired Bo
ean function. This is the following set of three transform
tions.

~i! NOT—a one-input one-output gate: Since the input a
output are both qubits, this gate transforms a two-state
tem into another two-state system. The transformation sw
u0& and u1&. In matrix terms this is described by the transfo
mation

F0 1

1 0G
where the basis states areu0& and u1&, respectively.

~ii ! CNTRL-NOT—a two-input two-output gate: The in
put and output both consist of two qubits—hence this is
transformation from one four-state system to another fo
state system. It transformsu00& into u00&; u01& into u01&; u10&
into u11&; u11& into u10&. The transformation matrix for this is

F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

G ,

where the basis states areu00&, u01&, u10& and u11&, respec-
tively. The name CNTRL-NOT arises since the first bit ac
as acontrol for the second—if it is a 1, it swaps 0 and 1
the second bit. It must be emphasized that this simp
minded verbal description only holds for the basis vecto
The transformations of superpositions are more complica
and can only be obtained by the state transition matrix
scribed above.

~iii ! CNTRL-CNTRL-NOT—a three-input three-outpu
gate: The input and output both consist of three qubits
hence this transforms one eight-state system to anothe
transformsu000& into u000&; u001& into u001&; u010& into u010&;
u011& into u011&; u100& into u100&; u101& into u101&; u110& into
u111&; u111& into u110&. Just like~i! and ~ii !, this too can be
listed out as an 838 matrix transformation~an 838 identity
matrix with the last two columns swapped!. The name
CNTRL-CNTRL-NOT arises since the first two bits act
control bits for the third—if both are 1, it swaps 0 and 1 i
the third bit. As mentioned before, this simple verbal d
scription only holds for the basis vectors—for superpo
tions, we need to use the state transition matrix.

The unitarity of these three operations is easily verified
noting that the column vectors of the transformation matri
are orthonormal~this is clearly the case since the gat
merely permute the basis states!. Using these three gates it i
possible to design a circuit such that one of its outputs is
specified Boolean functionf ( x̄) ~Fig. 1 on next page!. This
needs approximately the same number of gates as woul
required in a classical implementation using NANDs a
NORs. Such a circuit maps a superposition that is conc
trated in any single input basis state,x̄, to another superpo
sition concentrated in a single output basis statef ( x̄). Trans-
formations of general superpositions are obtained from
superposition principle. Note that to synthesize Boole
functions quantum mechanically, we need three basic g
whereas in the classical case we needed just two~NAND and
NOR!.

In order to develop more powerful quantum mechani
algorithms, in addition to these three gates we need so
770Lov K. Grover
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operations that are essentially quantum mechanical and
no classical analog, i.e., the entries of the state transi
matrix are not all 0’s and 1’s. Two such operations that
need in the quantum search algorithm are the WH trans
mation operation and the selective inversion operation, th
are discussed in the following paragraphs.

A basic operation in quantum computing is the operat
M performed on a single qubit—this is represented by
following matrix:

M[
1

&
F1 1

1 21G .
M is unitary since the columns are orthonormal. Also n
that MM5I . If we consider ann qubit system, we can per
form the transformationM on each qubit independently i
sequence, thus transforming the state of the system. A
tem consisting ofn qubits hasN[2n basis states, so the sta
transition matrix representing this operation is of dimens
2n32n. Consider the case when the starting state is on
the 2n basis states, i.e., it is described by an arbitrary str
of n binary digits composed of some 0’s and some 1’s. T
result of performing the transformationM on each qubit will
be a superposition of states consisting of all possiblen bit
binary strings with the amplitude of each state be
622(n/2). This transformation is referred to as the WH tran
formation and denoted byW. Note that sinceMM5I , it
follows that WW5I . Also note that, sinceM5MT, it fol-
lows thatW5WT. A generalization of this is the quantum
Fourier transformation, which leads to applications such
factorization.

The other transformation that we need is the selec
phase inversion of the amplitude in certain marked sta
The transformation matrix describing this for a four-sta
system with selective phase inversion of the second stat

F 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 1

G .

This is clearly unitary. Unlike the WH transformation, in th
case, the probability in each state stays the same.

Consider a binary functionf ( x̄) that is either 0 or 1. A
quantum mechanical circuit can be designed to invert
amplitude in the set of basis states,x̄, for which f ( x̄)
51—provided we are given a quantum mechanical bla
box that evaluates the functionf ( x̄) for any specifiedx̄ such
as that in Fig. 1. Note that we do not need to know in a
vance whichx̄ makes the function equal to 1—all we need
a circuit which for an arbitraryx̄, can tell us whether or no

Fig. 1. A quantum mechanical ‘‘black box’’ that evaluatesf ( x̄).
771 Am. J. Phys., Vol. 69, No. 7, July 2001
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f ( x̄) is 1. Given such a quantum mechanical black box
selective inversion transformation can be realized by us
this box along with some of the gates discussed so far—
is described in the circuit in Fig. 5~in the Appendix!.

C. Quantum search

As mentioned in the Introduction~Sec. I!, in the quantum
search algorithm we are given a certain condition and
need to find out which one of the specifiedN possibilities
satisfies this. This problem can be represented as a bi
function f ( x̄) defined overN basis states~denoted byx̄),
f ( x̄) is known to be 1 at a single value ofx̄, say t ~t for
target!—the goal is to findt. Without any other information
about the structure off ( x̄), it would take an average ofN/2
function evaluations to solve this problem on a classi
computer. The author found a quantum mechanical al
rithm that took onlyO(AN) steps.1

This was of considerable interest since, by properly de
ing the functionf ( x̄), a number of different problems, suc
as the crossword puzzle mentioned in the Introduction~Sec.
I!, could be cast in this form. All that is needed is a quant
mechanical box for evaluating the functionf ( x̄). By putting
a small amount of hardware around this box it is possible
searchN possibilities in onlyO(AN) steps. The only infor-
mation aboutf ( x̄) needed is that it is a binary function that
either 0 or 1 and that it is 1 at only a single point in th
domain.

The quantum search algorithm consisted ofAN repetitions
of the operator2I 0̄WIfW starting with the basis state wher

all qubits are 0—this basis state is denoted by 0.̄ W denotes
the Walsh–Hadamard~WH! transformation,I f denotes the
selective phase inversion of the target statet where the func-
tion f ( x̄) evaluates to 1,I 0̄ denotes the selective phase inve

sion of 0̄. This creates a superposition all of whose amp
tude is in the basis statet. A measurement then immediate
identifiest.

It is easily possible to carry out the algebra and verify th
the evolution of the system is such that in every repetition
2I 0̄WIfW, the amplitude in thet state rises byO(1/AN).1

Unfortunately, this calculation does not give much insig
into how such an algorithm could have been first invent
The algorithm was first presented at a conference in term
a diffusion transform,2 which is similar to the way it was
invented, but the significance of this was not usually app
ciated. Later on, there were more interpretations: invers
about average, rotation in a two-dimensional Hilbert spa
antenna array.3 All of these describe some aspect of the
gorithm, but they are very different from the way it wa
initially invented.

II. SCHRÖ DINGER’S EQUATION

Quantum mechanics was historically developed in
context of atomic physics. One of the first successful desc
tions of atomic phenomena was Schro¨dinger’s equation,
which was discovered by Erwin Schro¨dinger in 1926 and to
this day continues to be the most commonly used descrip
for nonrelativistic phenomena. This was the aspect of qu
tum mechanics that I was familiar with when I started inve
tigating quantum algorithms in 1995.

In Schrödinger’s framework, the basis states are contin
ous and uniformly distributed in space. Instead of the d
771Lov K. Grover
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crete statesu0& andu1&, there is a continuum of states denot
by ux&, wherex is a continuous variable. The state vector
specified in the form of a functionc(x) which denotes the
amplitude in the stateux& ~this function is usually referred to
as a wave function!. Schrödinger’s equation describes th
evolution of the wave functionc(x) in time for actual physi-
cal systems which are described by potential functions.

Let us begin with Schro¨dinger’s equation in one dimen
sion ~leaving out the scaling constants in order to focus
the nature of the equation!:

i
]

]t
c~x,t !52

]2

]x2 c~x,t !1V~x!c~x,t !,

which may be written as

]

]t
c~x,t !5 i

]2

]x2 c~x,t !2 iV~x!c~x,t !.

This describes the evolution of the wave functionc(x,t) in
the presence of a potential function:V(x).

This is analogous to the diffusion equation with abso
tion. If we break up the evolution into infinitesimal tim
steps of sizedt and imagine that each point is connected
n

e

a

772 Am. J. Phys., Vol. 69, No. 7, July 2001
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its two adjacent neighbors on an infinitesimal grid of sizedx,
then the derivatives in Schro¨dinger’s equation can be writte
as:

]

]t
c~x,t ![

c~x,t1dt!2c~x,t !

dt
,

]2

]x2 c~x,t ![
c~x1dx,t !1c~x2dx,t !22c~x,t !

~dx!2 .

It simplifies notation if we define a constant« such thatdx
[Adt/«. Substituting the definitions for the derivatives in
Schrödinger’s equation, we obtain the evolution of the wa
function with time, i.e., c(x,t1dt)5(12 iV(x)dt
22i«)c(x,t)1 i«(c(x1dx,t)1c(x2dx,t)).

In Schrödinger’s equation there is a continuum and the
fore an infinite number of states; however in order to de
onstrate the principle, assume just a four-state system w
the states are arranged in a loop with diffusion from ea
state to its two adjacent states. Denote the four states
x1,x2,x3 andx4. @c(x,t)# is a column vector with four com-
ponents. Then in accordance with Schro¨dinger’s equation,
the evolution for a timedt may be represented as a sta
matrix transformation as follows:
@c~x,t1dt!#5F 12 iV~x1!dt22i« i« 0 i«

i« 12 iV~x2!dt22i« i« 0

0 i« 12 iV~x3!dt22i« i«

i« 0 i« 12 iV~x4!dt22i«

G @c~x,t !#.

It may be verified that this is a unitary transformation in the limit of infinitesimaldt and infinitesimal«, i.e., the magnitude of
each column vector is 11O((dt)2)1O(«2) and the dot product of any two column vectors isO((dt)2)1O(«2).

The above state transition matrix may be represented approximately as follows:

@c~x,t1dt!#5DR@c~x,t !#,

where

D5F 122i« i« 0 i«

i« 122i« i« 0

0 i« 122i« i«

i« 0 i« 122i«

G ,

R[F exp~2 iV~x1!dt! 0 0 0

0 exp~2 iV~x2!dt! 0 0

0 0 exp~2 iV~x3!dt! 0

0 0 0 exp~2 iV~x4!dt!

G .
the
for
-

The representation is accurate up to termsO((dt)2)
1O(«2). Also note thatR is exactly unitary, butD only
approximately so, up toO(«2).

The sum of the entries in each column ofD is unity so it
is like a Markov diffusion process with imaginary state tra
sition probabilities~D is short fordiffusion transform!. This
Markov diffusion feature will be made use of later in th
design of the algorithm.

Repeating the infinitesimal state transformation, we obt
the transformation for finite times:
-

in

@c~x,t!#5~DR!¯
t

dt
repetitions̄ ~DR!~DR!~DR!

3@c~x,0!#.

Note thatD and R do not commute, which is why in the
equation above they have to be carefully listed out in
indicated order. In theoretical physics this technique
building up finite transformations out of infinitesimal non
commuting operations is called Trotter’s formula.
772Lov K. Grover
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By analogy with a classical situation, we know that if w
start with a uniform superposition in a line and let it evol
in the presence of a potential function, it will gravitate t
ward points at which the potential is lower~see Fig. 2!.

Therefore, in order to design an algorithm that will rea
certain marked states, one can give these marked sta
lower potential and then implement the same iterated tra
formations obtained from the evolution of Schro¨dinger’s
equation. We assume a single marked state. Assume w
not know which one this is, but we have a means of se
tively rotating its phase by any desired amount~the imple-
mentation of such a transformation is discussed in Sec.!.
t
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Using such a phase rotation transformation,R, we design an
algorithm using the analogy with Schro¨dinger’s equation.

Consider the same sequence of infinitesimal transfor
tions used to represent the evolution of a system in the p
ence of a potential~last equation of Sec. II!. In the design of
a quantum algorithm an immediate improvement is obtain
by noticing that we can connect each state to all other sta
instead of just to states that are adjacent on the grid, t
synthesizing an algorithm of the type

@c~ x̄,t!#5~DR!• • •~DR!~DR!~DR!@c~ x̄,0!#,

where
D[F ~12 iN«! i« i« ¯ i«

i« ~12 iN«! i« ¯ i«

i« i« ~12 iN«! ¯ i«

¯ ¯ ¯ ¯ ¯

i« i« « ¯ ~12 iN«!

G , R[F 1 0 0 ¯ 0

0 exp~ ig! 0 ¯ 0

0 0 1 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 1

G .
net
and

s be

ked

xi-

e
been
de.
For anN-state system, in order for the terms in each row
sum to unity, the diagonal terms ofD should be (12 i (N
21)«). However, for simplicity, we write this as (1
2 iN«). For N large, the error due to this is negligible.

Note that according to the state-transition transformat
derived from Schro¨dinger’s equation, positive values ofg
correspond to negative potentials. The question is whe
such a series of transformations willreally drive the system
into the marked state and if so how large« andg should be
and how many times the~DR! operation has to be repeate

Assume@c( x̄,0)# to be the uniform superposition, that i
a wave function with equal amplitudes in all states. The
fect of R is to rotate the phase of the target state byg. Note
that the sum of entries in each column ofD is unity, hence
the operationD is analogous to a Markov diffusion proce
with a transition probability from any state to any other st
being i«. This analogy simplifies the analysis and design
the algorithm. It immediately follows that there is no n
exchange between states that have the same amplitude

Fig. 2. Just as the balls roll down into regions of lower potential energ
uniform quantum superposition evolving under Schro¨dinger’s equation will
gravitate toward lower potential energy regions.
o

n

er

f-

e
f

nce

the transfer in the two directions cancels out, the only
exchange is between the state with the rotated phase
each of the other states.

The increase of amplitude in the marked state due toD is
maximum whenR initially rotates its phase byp/2—the in-
crease of amplitude is then proportional to« as shown in Fig.
3. Let the amplitudes in the unmarked and marked state
k/AN and iK /AN, respectively. Initiallyk andK are both 1
but as the amplitude in the marked state increases,K rises to
O(AN) andk shrinks.

Summing the transfers between each of the unmar
states and the marked state, it follows that afterD, the am-
plitude in the marked state becomes

iK

AN
1

ik

AN
N«1

K

AN
N«

and the amplitude in each of the other states becomes

k

AN
2

K

AN
«2

ik

AN
«.

Assuming k to be of order 1~as is the case initially!, it
follows that there is a net change of magnitude of appro

aFig. 3. The diffusion operation~D! results in a net transfer of amplitud
proportional to« from each state to the marked state whose phase has
rotated byR. There is no net transfer between states with equal amplitu
773Lov K. Grover
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mately N«/AN in the amplitude of the marked state. Als
the phase of the marked state gets rotated by approxima
N«, the magnitude and phase in the unmarked states
approximately the same.~k, the magnitude of the amplitude
in the unmarked states, is easily estimated by a conserva
of probability argument, i.e., the quantityk21K2/N is the
total probability and is always 1. Therefore, as long asK
,AN/2, k lies in the range 1/2,k,1.)

The previous paragraph describes how it is possible
obtain a transfer into the marked state even without know
which one it is, provided we can somehow rotate the ph
of the marked state and subsequently apply a diffusion
eration, D, that transfers amplitude proportional toi« be-
tween any two states. The analysis of the previous parag
suggests that the maximum transfer is achieved by keepi«
as high as possible, which might accomplish the entire tra
fer in a single operation. The problem, however, is that
matrix D, as defined in Sec. II, is no longer unitary for larg
«. If we look at the columns, their dot product isO(N«2) and
the sum of the squares of magnitudes in each column
1O(N2«2). D is therefore only approximately unitary pro
vided «!1/N.

The transfer of amplitude into the state with the rota
phase was estimated asN«/AN. Assuming«5O(1/N), this
transfer becomesO(1/AN). The rotation of the phase of th
marked state which wasN«, becomes of order 1. If we ad
just the R matrix to unrotate the phase by this precis
amount, then we can repeat theD operation to obtain an
additional transfer. It follows that inO(AN) repetitions of
the ~DR! cycle, the amplitude and thus probability in th
marked state will become a quantity of order 1.

IV. AN EXACTLY UNITARY DIFFUSION
TRANSFORMATION

In Sec. III, there is the tricky matter of precisely how hig
« can be. The issue arises from the fact that the matrixD is
unitary only up toO(N2«2) and therefore« is required to be
much smaller than 1/N. The number of steps required by th
algorithm is O(AN/N«), which can therefore at best be
large constant timesAN—the precise scaling factor will de
pend on precisely how much« is smaller than 1/N.

We could carry out a perturbation to makeD unitary to
higher powers of«, thus making it possible to make« higher.
Instead, this section willcreate a diffusion matrix that is
exactly unitary.

Consider
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D[F a b b ¯ b
b a b ¯ b
b b a ¯ b
¯ ¯ ¯ ¯ ¯

b b b ¯ a

G ,

wherea andb are complex constants to be determined ba
on the unitarity condition. Note that the structure of this m
trix immediately implies that the sum of the entries in ea
column be exp(il) wherel is real. ~If l had an imaginary
component, it would imply that the sum of the amplitud
would increase or decrease exponentially as the wave fu
tion evolved.! Therefore by performing a phase rotatio
transformation onD we can always transform it to a form
where the sum of the entries in each column is 1. As in S
III, this will help in the design of the algorithm.

The condition that the sum of the absolute squares of e
column vector ofD is unity, gives Eq.~1! below and the
condition that any two column vectors ofD be orthogonal
yields Eq.~2!,

uau21~N21!ubu251, ~1!

2 Real~ab* !1~N22!ubu250. ~2!

The case previously considered in Sec. III (a512 iN«;
b5 i«) satisfies these two conditions approximately provid
«!1/N. We would like to makeubu as high as possible in
order to attain the maximum transfer in each step. This s
tion shows thatubu can be made as high as 2/N.

There is some freedom in the choice ofa andb since there
are four variables~the real and imaginary portions ofa and
b! and only two equations. One of the degrees of freed
represents the fact that if we have any solution~a, b! where
a and b are complex, then@a exp(if),bexp(if)# is also a
solution for any realf. Therefore, we can choose the pha
of one of the variables arbitrarily, say we choosea to be real.
Equations~1! and ~2! then become

ar
21~N21!~br

21bi
2!51, ~1a!

2arbr1~N22!~br
21bi

2!50. ~2a!

Substituting forar in terms of ubu2 from ~1a! and ~2a! and
squaring both sides, we obtain

~N22!2ubu4

12~N21!ubu2
54br

2<4ubu2.

This leads to the boundubu<2/N, which implies ubr u
<2/N. Trying out br52/N, bi50 indeed gives a solution
with a52112/N andD becomes
D53
S 211

2

ND 2

N

2

N
¯

2

N

2

N S 211
2

ND 2

N
¯

2

N

2

N

2

N S 211
2

ND ¯

2

N

¯ ¯ ¯ ¯ ¯

2

N

2

N

2

N
¯ S 211

2

ND
4 .
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Note that as mentioned in the beginning of this section,
modulus of the sum of the entries in each column is ind
1; hence it too may be viewed as a Markov process w
transition probabilityfrom any state to any other state bein
2/N. This fact will help in the design of the quantum sear
algorithm in Sec. V.

V. THE QUANTUM SEARCH ALGORITHM

It is easily seen that the maximum transfer into the mar
state that can be accomplished by the matrixD happens
when the phase of the marked state is rotated byp relative to
the other states. This is illustrated in Fig. 4; contrast this w
the situation in Sec. III where the maximum transfer w
attained when the phase of the marked state was rotate
p/2.

Assume the amplitude in the marked state to be2K/AN,
whereK!AN, and the amplitude in each of the other sta
to bek/AN wherek,1. As a result ofD, as shown in Fig. 4,
there is a net transfer of

N3
2

N S k

AN
1

K

AN
D

into the marked state. When we add the initial amplitude
2K/AN, the total amplitude in the marked state afterD
becomes (K12k)/AN. Similarly, adding the initial ampli-
h
b

es
-
I
pu

.
c.
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tude to the amplitude transferred from the marked state,
amplitude in each of the other states becomes

k

AN
2

2

N S k

AN
D 2

2K

NAN
,

which is k/AN2O(1/N). Therefore the net result of the op
eration is to change the amplitude in the marked state fr
2K/AN to (K12k)/AN while leaving the amplitudes in the
unmarked states approximately the same.

After this, if the amplitude in the marked state is invert
by R, the transformationD can be used again to further in
crease the magnitude by 2k/AN. As in Sec. III,k stays vir-
tually unaltered and is of order 1; it follows that inO(AN)
repetitions of the~DR! cycle, the amplitude in the marke
state gets boosted to a quantity of order 1.

The algorithm can hence be described by the follow
sequence of transformations:

Here @c init( x̄)# is the uniform superposition with equal am
plitude of 1/AN in all N states and@cfinal( x̄)# is a superpo-
sition which has an amplitude of order 1 in the marked st
and small, uniform amplitudes in all other states. The ma
cesD andR are summarized below:
D[3
S 211

2

ND 2

N

2

N
¯

2

N

2

N S 211
2

ND 2

N
¯

2

N

2

N

2

N S 211
2

ND ¯

2

N

¯ ¯ ¯ ¯ ¯

2

N

2

N

2

N
¯ S 211

2

ND
4 , R[F 1 0 0 ¯ 0

0 21 0 ¯ 0

0 0 1 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 1

G .
VI. SYNTHESIZING D

Section V described the matrix transformations whic
when carried out, result in a significant amplitude being o
tained in the marked state. These wereN3N matrix trans-
formations and we still need to show how to synthesize th
by means ofO(logN) two-dimensional rotations and one
dimensional reflections of the type discussed in Sec.
since these are the technologically feasible quantum com
ing operations.

By using the fact thatWW5I with W as defined in Sec
I B, the transformation matrixD as defined at the end of Se
V can be written in the following form:W(WDW)W. Sub-
stituting for D from Sec. V, it follows that
,
-

e

B
t-

D52WS WS I 2
2

NF 1 1 1 ¯ 1

1 1 1 ¯ 1

1 1 1 ¯ 1

¯ ¯ ¯ ¯ ¯

1 1 1 ¯ 1

G D WD W

52WS I 2
2

N
WF 1 1 1 ¯ 1

1 1 1 ¯ 1

1 1 1 ¯ 1

¯ ¯ ¯ ¯ ¯

1 1 1 ¯ 1

GWD W. ~3a!
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Assume that the states are encoded so that the first sta
the one with all qubits in the 0 state~as mentioned before
this state is denoted by 0)̄. Then since

M u0&5
1

&
~ u0&1u1&),

it follows that W transforms 0̄to a superposition with equa
amplitudes in allN states, i.e.,

WF 1
0
0
¯

0

G5
1

AN F 1
1
1
¯

1

G .

SinceWW5I , it follows, by premultiplying both sides byW,
that

WF 1
1
1
¯

1

G5ANF 1
0
0
¯

0

G .

Therefore,

WF 1 1 1 ¯ 1

1 1 1 ¯ 1

1 1 1 ¯ 1

¯ ¯ ¯ ¯ ¯

1 1 1 ¯ 1

GW

5ANF 1 1 1 ¯ 1

0 0 0 ¯ 0

0 0 0 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 0

GW

5NF 1 0 0 ¯ 0

0 0 0 ¯ 0

0 0 0 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 0

G . ~3b!

Substituting~3b! in ~3a!:

Fig. 4. The diffusion transformation~D! results in a transfer of amplitude to
the selected state whose phase is rotated byp by the R transformation.
There is no net transfer between states with equal amplitude.
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is

D52WS I 22F 1 0 0 ¯ 0

0 0 0 ¯ 0

0 0 0 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 0

G D W

52WF 21 0 0 ¯ 0

0 1 0 ¯ 0

0 0 1 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 1

GW. ~3c!

Equation~3c! is written asD52WI0̄W, whereI 0̄ denotes

selective inversion of the 0¯state.

VII. CONCLUDING REMARKS

This paper has outlined the steps that went into the de
opment of the quantum search algorithm. As with many n
scientific developments, the steps are far from rigorous. N
ertheless, I have found these insights helpful in develop
the search algorithm and its extensions.

There have been several analyses of the search algor
but there are still only partial answers to some basic qu
tions which seems to suggest that our understanding of
algorithm is still limited. The first question is:What is the
reason that one would expect that a quantum mechan
scheme could accomplish the search in O(AN) steps? It
would be insightful to have a simple two-line argument f
this without having to describe the details of the search
gorithm.

It has been proved that the quantum search algorithm c
not be improved at all, i.e., any quantum mechanical w
need at leastO(AN) steps to carry out an exhaustive sear
of N items.4,5 Why is it not possible to search in fewer tha
O(AN) steps? The arguments used to prove this are ve
subtle and mathematical. What is lacking is a simple a
convincing two-line argument that shows why one wou
expect this to be the case.
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APPENDIX

The quantum search algorithm is based on the assump
that it is possible to selectively invert the amplitudes in

Fig. 5. The above quantum mechanical circuit selectively inverts amplitu
of precisely those basis states where the functionf ( x̄) evaluates to 1.
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basis state where the functionf ( x̄) evaluates to 1. As men
tioned in Sec. I B, such a circuit can be designed, provid
we are given a quantum mechanical circuit to evaluate
function f ( x̄) in any specified basis statex̄ ~Fig. 1!. The
selective inversion circuit is shown in Fig. 5.4 Incidentally, I
found out about this circuit several months after develop
the search algorithm.

To analyze schematic quantum circuits, such as in Fig
one examines the transformation of the input basis state
and then by the superposition principle as described at
end of Sec. I A, the effect on any superposition can be
tained. It is easily seen in the above circuit that if for som
n-qubit input basis statex̄, the output of thef ( x̄) gate is 1,
the ancilla qubit superposition is transformed from~a, b! to
~b, a!. If a is 1/& andb is 21/&, something very interest
ing happens. If the output of thef ( x̄) gate is 0, the ancilla bit
superposition stays unchanged; whereas if the output of
f ( x̄) gate is 1, the ancilla qubit superposition is transform
from ~1/&, 21/&! into ~21/&, 1/&!. This is equivalent to
changing the sign of the amplitude. Thus in anyn-qubit su-
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perposition, the amplitude of precisely those basis states
selectively inverted for which the functionf ( x̄) is 1.
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Irresponsible improvements in notation have already caused enough trouble. I don’t know who
first thought of usingu in spherical coordinates to mean azimuth instead of colatitude, as it almost
universally did and still does in physics and in advanced mathematics. It’s superficially a reason-
able convention because it makesu the same as in plane polar coordinates; however, sincer is
different anyway, that isn’t much help.
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