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Abstract

The problem of electron tunneling assisted by an elementary excitation in a double barrier resonant device is usually

described within a sequential (decoherent) approximation. By solving exactly the many-body problem for a simplified model of

electron–phonon interaction we show, analytically and numerically, that the assisted tunneling peak can be strongly enhanced

by an appropriate election of the geometrical parameters of the device. This induces a symmetry condition in the Fock space

that maximizes the effectiveness of the scattering process. We propose that this process could provide the primary longitudinal

optical phonons required to operate a phonon laser (SASER). q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The continuous downscaling of electronic devices from

the layered semiconductor heterostructures to nanostruc-

tures and more recently, to molecular systems, have been

paralleled by a great progress in the understanding and

control of electronic transport [1,2]. These advances led to

the observation of novel quantum phenomena. Undoubt-

edly, a key idea behind these advances has been Landauer’s

view [3,4] of conductance as a transmittance, whose

conceptual simplicity was instrumental to trigger the

innovation. However, the electron–electron (e–e) and the

electron–phonon (e–ph) interactions may add substantial

complexity to the electronic problem, limiting its appli-

cation. The e–e interaction can be often addressed in a mean

field approach and has received much attention in different

contexts such as single electron transistors, electron pumps,

turnstiles and interferometers. In contrast, the e–ph

interactions lag behind in terms of applications. After the

observation of optical phonon-assisted tunneling [5–7]

interest on e–ph interaction remained focused in double

barrier Resonant Tunneling Devices (RTD) until the recent

observation of related electro-mechanical effects in mol-

ecular systems [8–10]. Since only the simple qualitative

questions related to these phenomena have been addressed,

a fresh reconsideration of the problem could lead to

substantial progress in an underdeveloped area. In this

paper we will perform such conceptual revision with a focus

on an extension of the Landauer’s view to the e–ph Fock

space that will allow the design of a sound emitter.

The careful measurement of the current–voltage (I–V)

curve in AlGaAs-GaAs RTDs shows [5–7], besides the usual

elastic resonance peak, a weak satellite peak rising in the

valley of the I–V curve. This occurs when the energy of an

electron in the emitter exceeds the energy of the ground state in

the well by just a quantum of the well’s longitudinal optical

(LO) vibrational mode. This enables the decay of an electron

with kinetic energy 1 # 1F and potential energy eV in the

emitter into an electron with kinetic energy 1þ eV 2 �v0 in

the collector plus a LO phonon (see Fig. 1(a)). By applying

a strong magnetic field the satellite peaks become

very thin limited only by the electronic lifetimes

and the small LO phonon bandwidth lower than

1022 meV p �v0 . 36 meV. In these RTDs even when

the LO phonons are confined to the well, they have a short
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lifetime [11] because they decay into a pair of LO and

transverse acoustic (TA) phonons. The expectation that the

secondary TA phonons can form a coherent beam inspired a

proposal for the generation of a coherent sound beam (in the

region of 2 THz) which justifies the name of SASER in

analogy with LASER [12,13] for such device. The critical

intensities required for stimulated decay of the primary

phonons were recently discussed [14]. Although definitive

rates would be those provided by experiments, it is clear that

operation in the ‘sasing’ regime would require an important

source of primary optical phonons. The devices considered

previously in this context Refs. [13,15] required an energy

difference between the first two electronic states in the well

satisfying the resonant condition E1 2 E0 ¼ �v0 (see Fig.

1(b)). This situation is exactly analogous to that of a

LASER. However, while in a LASER there is always a

photon mode satisfying such condition, in a SASER the

phonon energy is a fixed magnitude. Therefore, the onset of

the ‘sasing’ regime would require the careful construction of

a specifically designed device. This task proves particularly

difficult as the frequencies of phonon modes and interaction

strengths are not easy to predict from the current status of

the theory [16]. Therefore, one would desire an alternative

design where a resonant condition could be tuned up by an

external parameter such as the voltage.

A way to overcome the mentioned difficulties appears

when one realizes [17] that an electron trapped in a resonant

state dresses itself with vibrational modes that forms a

polaron. When the barriers allow tunneling these get a life-

time becoming polaronic resonances whose relative energy

can be tuned by the electric field to achieve the phonon

emission. The resulting scheme is just that of phonon-

assisted tunneling, which is represented in panel a) of Fig. 1.

Our new point over the established description of phonon-

assisted tunneling emission is that phonon emission could be

considerably enhanced by requiring a specific balance

between the rates at which these many-body polaronic

resonances are build up and decay. Since these rates can be

related to the single electron tunneling escape rates through

the barriers which in turn depend on the geometry of the

barriers, the last can be tailored to enhance significantly the

LO phonon emission. A relevant point is that the present

proposal does not require an accurate definition of the

geometry dependent device parameters. Instead, the oper-

ation in the phonon emission mode only requires the tuning

of the many-body resonance achieved by the applied

voltage.

This paper is organized as follows. In Section 2 we give a

brief perspective of the main theoretical approaches for

phonon assisted tunneling in RTD’s. In Section 3 we

introduce our model and derive analytical expressions that

synthesize the physics presented above. Section 4 is devoted

to the presentation and discussion of numerical results. Our

conclusions are given in Section 5.

2. Theoretical background

The first solutions of transport in an RTD including

strongly inelastic e–ph scattering [18–20] considered a

single electron state in the well interacting with optical

phonons. The scattering problem was solved, in a one

electron approximation, by computing the many-body

Green’s functions. Its solution requires some simplifications

such as imposing energy independent couplings to the

electrodes [18] (‘broad band’ approximation). In this

coherent picture, a tight-binding model [21] yields similar

results. Further studies went beyond the simplified e–ph

interaction to include the full phonon band and electron

recoil [22,23]

A conceptually different approach considered the e–ph

interaction as a source of decoherence and thermalization

for the electrons in a resonant region [24] by adopting a

complex self-energy correction [25] to the electronic states.

Therefore, in this description, the phonon system acts in a

way analogous to the ‘voltage probes’ in the Büttiker’s

formulation of Landauer’s picture. Only those electrons that

do not interact with phonons maintain coherence with its

source. This line, which finds full formal support within the

Keldysh formalism [26,27], has been further developed [16]

to include strongly inelastic processes and originated

computational codes [28] that simulate mesoscopic devices.

The most frequent scheme is the use of rate

Fig. 1. Schematic representation of the processes leading to the

phonon emission for two different RTD configurations. E0 and E1

represent the first two electronic levels in the well. In a) only the

electronic ground state and the first polaronic state of one electron

plus one phonon (depicted as a dotted line) are relevant. In figure b)

the device parameters are chosen in order to satisfy the condition:

E1 2 E0 ¼ �v0:
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equations [16,29]. The calculation of the rate transition

probabilities used in this method relies on the appli-

cation of the Fermi Golden Rule (FGR) at two stages:

a) It describes the tunneling entrance to the well and its

ulterior escape independently. There, quantum coherent

effects are ignored since it is assumed that the phase of

the electronic wave function is randomized by some

mechanism. Within this sequential tunneling picture, the

electron tunnels into the well and, after losing memory

of its phase, it tunnels out of the well. b) Once the

electron is inside the well, the phonon emission is also

studied with the FGR. These approximations require a

weak e–ph coupling with a dense phonon spectrum

justifying the FGR and the electronic decoherence.

In this work, we use a fully coherent description of

the joint processes of tunneling and phonon emission.

This approach, introduced in Refs. [12] and [30], while

containing the semiclassical rate equation limit in the

appropriate conditions, is able to describe many-body

phenomena that are beyond a decoherent description.

The general many-body problem can be simplified if

one considers a single electron interacting with the

phonons. This problem can be exactly mapped into a

one-body scattering in a higher dimensional system.

Each phonon mode can be seen as a new dimension of

an ‘electronic’ variable. Within this equivalent problem,

the transmission probability of electrons between

incoming and outgoing channels with different number

n of phonons can be calculated exactly from the

Schrödinger equation. Its solution is easily obtained by

a truncation of the Fock space that only includes states

within some range of n. This range can be expanded

until the answer converges, allowing a variational, non-

perturbative calculation. Thus, we are not restricted to a

weak e–ph coupling. It must be emphasized again that

in this approach the e–ph interaction is not assumed to

produce a phase randomization, as quantum phases are

fully conserved. Instead of calculating transition rates,

the complex quantum amplitude for each state in the

Fock space is obtained.

3. Model and analysis

We want to model the electronic transport through an

RTD including the coherent effects of the e–ph interaction

in the well region. By assuming translational invariance in

the plane perpendicular to the current flow, the equations

can be decoupled for each wave-vector k’ in this plane. The

resulting Hamiltonian will be the sum of 1-d Hamiltonians

for each k’: In what follows, we will first consider the 1-d

problem and this index ðk’Þ will be omitted. To this end we

will introduce a Hamiltonian that is a sum of an electronic

contribution He; a phonon contribution Hph and an

electron–phonon interaction term He–ph

H ¼ He þHph þHe–ph: ð1Þ

The electronic part is modeled by means of a single band

described by

He ¼
X

j

Ejc
þ
j cj 2

X
i; j

Vi; jðc
þ
i cj þ cþj ciÞ; ð2Þ

which represents a nearest-neighbor tight-binding Hamil-

tonian for the electrons, where cþj and cj are electron

operators at site j on a 1-d chain that includes a number of

sites in the barriers and the well. The hopping parameters

Vj; jþ1 ¼ V are defined in terms of the effective mass mp and

the lattice constant a as V ¼ �2=ð2mpa2Þ: The site energies

Ej model the potential profile. We assume that the potential

energy drop eV is linear through the double barrier and

limited to it. The physical dimensions correspond to the

situation where there is a single resonant peak in the energy

range of interest. NL and NR are the number of sites in the

left and right barriers and NW are those in the well, the

associated widths are Li ¼ Nia: In what follows, the widths

of the barriers and the well will be expressed in units of this

constant.

The most important interaction between electrons and

phonons in polar semiconductors involves a longitudinal

optical (LO) phonon band �v[q’,q] and is limited to the

well region. Even when an electron state can interact with

different modes, it was found [22] that the dominating decay

process (focusing effect) occurs through the mode with

q’ ¼ k’. This justifies to consider only one phonon mode

per transversal state. Moreover, the weak dispersion relation

of the LO phonons (�v[kF,p/Lw] 2 �v0 , 1022 meV)

leads to the use of a single frequency �v0 ¼ 36 meV for

all the modes and a single coupling constant denoted by Vg.

Then, the phonon and the electron–phonon terms of the

Hamiltonian are given by:

Hph ¼ �v0bþb; ð3Þ

and

He–ph ¼ Vg

X
j½well�

cþj cjðb
þ þ bÞ; ð4Þ

where bþ and b are the creation and annihilation operators

for phonons. Then, if we consider the Fock space expanded

Fig. 2. Representation of the model. Each site is a state in the Fock

space: The different rows are states with different number of

phonons in the well (n ). The sites in black are in the barriers.

Straight lines are hoppings and wavy lines are e–ph couplings.
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by lj; nl ¼ cþj ðb
þÞn=

ffiffiffi
n!

p
l0l; the many-body problem maps to

the 2-dimensional one-body problem shown in Fig. 2. The

vertical dimension is the number n of phonons [12,30].

Numerical results for the model described by the

Hamiltonian of Eqs. (2–4) will be presented in the next

section. In order to obtain analytical expressions for the

transmittances and currents the model can be further

simplified if one considers only the electronic ground state

in the well. Therefore, one gets a resonant central site that

interacts with the phonons and is weakly coupled to the

leads. Then, E0 ¼ EðoÞ 2 aeV is the well’s ground state

which is shifted by the electric field and V0;1 ¼ VR and

V21;0 ¼ VL (notice that VLðRÞ p V) which fix the tunneling

rates through the barriers. The site energies are Ej ¼ 2V for

j , 0 and 2V 2 eV for j . 0: For barrier widths LL and LR

and well size LW a linear approximation for the potential

profile gives a ¼ ðLL þ LW=2Þ=ðLL þ LW þ LRÞ:

3.1. Green’s functions and transmittances

To obtain the one-electron transmittances between

different channels several methods can be adopted. One

possibility is to use the pruning method proposed by Bonča

and Trugman and solve for the wave function. An

alternative is to work out the Green’s functions for the

system. The connection between the Green’s functions and

the scattering matrix was established by Fisher and Lee [31,

32] and extended for multilead tight-binding systems by

D’Amato and Pastawski [24]. Here we use this last option.

First we eliminate the horizontal dangling chains through a

decimation procedure [24,33]. We then obtain an effective

Hamiltonian for the well site coupled to the phonons:

~He–ph ¼
X
n$0

{½E0 þ n�v0 þ Snð1Þ�l0; nlk0; nl

2
ffiffiffiffiffiffiffi
n þ 1

p
Vgðl0; n þ 1lk0; nlþ l0; nl

£ k0; n þ 1lÞ};

ð5Þ

where the retarded self-energy corrections Sn ¼ LSn þ
RSn

take into account the electron hopping into the left (L) and

right (R) electrodes. These self-energies are given by:

LSn ¼
VL

V

����
����2£Sð12 n�v0Þ; ð6Þ

RSn ¼
VR

V

����
����2£Sð12 n�v0 þ eVÞ; ð7Þ

with

Sð1Þ ¼ Dð1Þ2 iGð1Þ;

Dð1Þ ¼
1

p

ð Gð10Þ

12 10
d10;

ð8Þ

Gð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 2 ½ð12 2VÞ=2�2

q
£ uð1Þ £ uð4V 2 1Þ: ð9Þ

While the imaginary part G ¼ �v1=ð2aÞ is proportional to the

group velocity v1 in the electrodes, the actual escape rates

GLðRÞ=� are also controlled by the barrier geometry. For

width LLðRÞ and attenuation length j, GLðRÞ=G ¼ lVLðRÞ=V l2 .
exp½2LLðRÞ=j�:

The retarded Green function connecting states m and n,

GR
n;mð1Þ ¼ k0; nlð1I2 ~He–phð1ÞÞ

21l0;ml ð10Þ

has poles at the exact eigen-energies. If Snð1Þ ; 0; these are

the polaronic energies E0 2 ðlVgl
2
=�v0Þ þ n�v0: The trans-

mission coefficient Tn;m from the m-th incoming channel at

left electrode to the n-th channel at right is given by [24]:

Tn;mð1Þ ¼ 2Im½RSnð1Þ�lGR
n;mð1Þl

2
2Im½LSmð1Þ�: ð11Þ

In what follows, we will assume a weak electron–phonon

coupling, g ¼ ðVg=�v0Þ
2 p 1 (as is the experimental case)

and well separated resonances, ð1F;GL þ GRÞ , �v0: In the

calculation of the currents we will consider the low

temperature regime kBT p 1F : Therefore, we will need

only the transmittances with zero initial phonons in the

system. We consider a Fermi energy 1F p V as is the case

for semiconductors. Then we approximate the self-energy

by the following expression:

Sð1Þ < 2iGð1 ¼ 1FÞ £ uð1Þ: ð12Þ

Note that this approximation is different from the usual

‘broad-band’ approximation [18] since here the Heaviside

step function plays a very relevant role by cancelling some

transmittances.

The elastic transmittance, i.e. without a net phonon

emission during the tunneling process, can be obtained from

the Green’s function:

GR
0;0 .

1 2 g

12 �E0 þ i½GL þ GR�

þ
g

12 ½ �E0 þ �v0� þ i½ ~GL þ GR�
; ð13Þ

which is evaluated with the first two polaronic states. Here,
~GL ¼ gGL and �E0 ¼ E0 2 ðlVgl

2
=�v0Þ: The first term

contains the main resonance associated to the build up of

the polaronic ground state and the second term contains a

virtual exploration into the first polaronic excitation. It is

interesting to note that when G . 0; this Green function

would be close to cancellation at an intermediate energy
�E0 , 1 , �E0 þ "v0 giving rise to an antiresonance [33,34].

This concept extends the spectroscopic Fano-resonances

[35] to the problem of conductance. Here, this destructive

interference effect is manifested in a many-body problem

(see Ref. [36] for a more detailed discussion). For g p 1;

this effect is less important and, in the whole energy range,

T0;0 .
4GLGR

½12 �E0�
2 þ ½GL þ GR�

2
þ OðgÞ ð14Þ

describes the main resonant elastic peak at 1 ¼ �E0:
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The inelastic transmittance, T1;0; can be evaluated from:

GR
1;0 .

2
Vg

�v0

12 �E0 þ i½GL þ GR�

þ

Vg

�v0

12 ½ �E0 þ �v0� þ i½ ~GL þ GR�
; ð15Þ

when 1þ eV . �v0 escapes are enabled and the poles of

this Green’s function involve the following processes: a)

The first term gives an inelastic component in the

transmittance at the main peak. b) The second term provides

a satellite peak at 1 ¼ �E0 þ �v0 associated to a polaronic

excitation followed by its decay into an escaping electron

and a phonon left behind. Since this is the process that

interests us, we now restrict ourselves to energies around

this satellite peak:

T1;0 .
4 ~GLGR

½12 ð �E0 þ �v0Þ�
2 þ ½ ~GL þ GR�

2
: ð16Þ

This shows that phonon emission is a resonance in the Fock-

space. A maximal probability ðT1;0 ¼ 1Þ requires equal rates

of formation and decay [34]: ~GL ¼ GR; which in our RTD

implies:

LR . LL þ 2j ln
�v0

Vg

" #
: ð17Þ

Hence, thin barriers with this generalized symmetry

condition have T1;0 . 1 over a broad energy range.

3.2. Inelastic current

Given the transmittances between the different channels,

the problem is how to compute the currents. In the

Landauer’s picture, the view is that of orthogonal scattering

states extended along the conductor from the emitter to the

collector. This orthogonality implies that the Pauli exclusion

principle does not enter in the calculation of the currents. In

the presence of inelastic scattering, electrons from different

incoming states can occupy the same outgoing state. Thus, if

one uses single electron transmittances to represent the

many-electrons system, these must be complemented with

some factors accounting for the Pauli exclusion [37].

Otherwise, there may be an overflow of the final states.

An attempt to solve this problem is the implementation of a

self-consistent procedure for the non-equilibrium electron

distributions [38]. However, for the experimental case of

low temperatures (kBT p 1F) and non-linear response and

ðeV 2 �vo . 1FÞ; there is no-overflow in the right lead

since electrons with energies up to 1F do not compete for the

same final state. Then, the currents can be computed as in a

multilead Landauer picture. The total current from left to

right is a sum of the currents through each of the leads on the

right corresponding to different number of phonons:

Itot ¼
X

n

In: ð18Þ

where

In ¼
2e

h

� 	ð1F

0
Tn;0ð1Þd1: ð19Þ

Note that inelastic reflection is prevented by the condition

�v0 . 1F :

If we assume perfect interfaces and neglect the

momentum transfer between electrons and phonons, the

tunneling current for a three-dimensional structure can be

obtained in terms of the one-dimensional transmittance. The

current that produces the emission of n phonons is obtained

from Eq. (19) by integration over the transversal modes:

I3D
n ¼

2e

h

� 	ð1F

0
A

mp

2p�2
ð1F 2 1ÞTn;0ð1Þd1; ð20Þ

where A is the cross-sectional area of the device. The factor

that multiplies the transmittance inside the integral takes

account of the number of transversal modes with energy

between the longitudinal contribution 1 to the energy and

1F : While conservation of transverse electron’s momentum

might not be fully realistic [29], it constitutes a first

approximation yielding results consistent with the main

experimental features.

It is interesting to note how the ‘decoherence’ introduced

by the e–ph interaction on the former single particle

description can be appreciated. Within this formulation,

decoherence arises because the increase in the size of the

Hilbert space produces extreme phase fluctuations which

prevents the precise prediction of the relative phases of the

states required in an interference experiment. Note that even

if �vo ! 0 the outgoing currents in Eq. (18) cannot

interfere. Other points are phase shift fluctuations and the

‘broadening’ of the resonant energy due to the additional

processes of real and virtual phonon emission [36].

From Eq. (19) and the expressions obtained in the

previous subsection for the transmittances we will now

obtain currents I0 and I1: At the satellite peak, the main

elastic contribution to the current is provided by the off-

resonant tunneling through the ground state, i.e.

I0 .
2e

h
4GLGR1F =ð�v0Þ

2
: ð21Þ

On the other hand, the inelastic current that involves the

emission of one phonon in the tunneling process is:

I1 .
e

�
4 ~GLGR

ð ~GL þ GRÞ
£

2

p
arctan

1F

2ð ~GL þ GRÞ

 !" #
: ð22Þ

This current differs from that resulting from the use of rate

equations [16] by the factor in brackets which is
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fundamental to resolve extreme regimes:

I1 .

e

h
4 ~GLGR=ð

~GL þ GRÞ; for 1F q ð ~GL þ GRÞ;

2e

h
T1;0ð �E0 þ �v0Þ £ 1F ; for 1F p ð ~GL þ GRÞ:

8>><
>>: ð23Þ

When 1F q ð ~GL þ GRÞ the inelastic current becomes

independent of the right barrier geometry in the wide

range of geometries where 1F q GR . ~GL: In the opposite

case I1; and hence the power emitted as phonons I1�v0=e;

becomes determined by the transmittance at resonance,

which is maximized by the generalized symmetry condition

of Eq. (17).

3.3. Efficiency of the phonon emission

In a general situation where we allow the emission of n

phonons, the quantity of interest to analyze the optimization

of the phonon emission in the device is the power emitted.

The power associated with current I0 degrades fully into

inconvenient electrode heating, while the other terms ðn .

0Þ have an important contribution as useful phonon modes.

The power emitted as LO phonons is related to the inelastic

components of the current:

Pin ¼ �v0

X
n.0

n
In

e
: ð24Þ

The efficiency of the device to transform the electric

potential energy into LO-phonon energy can be character-

ized by the ratio, h, between Pin and the total power P

dissipated by the electrons

h ¼
Pin

P
¼

Pin

ItotV
: ð25Þ

Using Eq. (24), this expression can be written as:

h ¼

�v0

X
n.0

n
In

e

ItotV
:

Each current term, Inðn . 0Þ; contributes with n useful

phonons, while the energy associated with I0 degrades fully

into electrode heating. Then, one might seek a maximal ratio

between the inelastic power Pin and the total power P. As a

function of the applied voltage the efficiency is expected to

have a maximum at the voltage corresponding to the satellite

peak. At the voltage tuning the resonance at the satellite peak

V0 . ðEðoÞ 2 lVgl
2
=�v0 þ �v0 2 1F=2Þ=a; the lowest order

of h can be written from Eqs. (21) and (22) as:

h .
�v0

eV0

I1

ðI0 þ I1Þ

� �
: ð26Þ

The factor in brackets is small for narrow barriers because

non-resonant tunneling dominates over phonon-assisted

tunneling, thus reducing the inelastic current as compared

to the elastic component. For wide barriers, this factor goes

to one as ~GL þ GR ! 0: The other factor decreases with

increasing right barrier’s width because it requires a higher

V0: Thus, as GR is decreased, two effects compete: the

switch from non-resonant to phonon assisted resonant

tunneling and an excess in the electronic kinetic energy in

the collector. Hence, as long as the left barrier is not

extremely thin ðGL . �v0Þ; h cannot depend much on

geometry. With this restriction in mind, a device designed

for phonon production should maximize the emitted power

according to Eq. (17).

4. Numerical results

In this section we will contrast the previous predictions

Fig. 3. Power emitted as LO phonons as a function of the applied voltage in one-dimension for LL ¼ 7a (19.7 Å) and different values of LR: In

this figure, the Fermi energy is taken equal to 10 meV.
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with the numerical results of a description involving

geometry, voltage and energy dependences of a typical

RTD. We consider the Hamiltonian of Eqs. (1–4).

In what follows, we consider the low temperature

limit in which there are no phonons before the

scattering process. The parameters in our calculations

are chosen to simulate the case of a GaAs-AlGaAs

structure. The effective mass mp is taken to be 0:067me;

the LO phonon frequency �v0 ¼ 36 meV; the discretiza-

tion constant used in our calculations is a ¼ 2.825 Å

and the value of the hopping parameter V ¼ 7.125 eV.

The electron–LO-phonon coupling constant Vg is taken

to be 10 meV which gives a typical electron–phonon

interaction strength g ¼ ðVg=�v0Þ
2 , 0:1: The barrier

heights are 300 meV and the Fermi energy 1F is taken

equal to 10 and 20 meV. We consider a well of 56.5 Å

(corresponding to 20 layers of GaAs grown in the [100]

direction). NL; NR and NW are the number of sites in the

left and right barriers and the well, the associated

widths are Li ¼ Nia: Up to Nph ¼ 3 phonon quanta are

considered in the calculations. This gives satisfactory

accuracy in the whole range of energy.

4.1. Power emitted as LO-phonons

Let us consider the case of a thin left barrier (with a

typical transmission probability TLð1FÞ ¼ GL=G , 0:03). In

Fig. 3 we show Pin –V curves in one-dimension calculated

according to Eq. (19) for various right barrier widths LR: We

observe two main peaks, a) and b), which are separated

approximately by

dV .
�v0

ae
;

where aeV is the typical energy gain from the electric field

at the time of phonon emission. In a linear approximation

a ¼
LL þ LW=2

LL þ LW þ LR

:

We are interested in the optimization of the emission of LO

phonons at the second peak. This allows for the highest

efficiency factor while keeping an appreciable phonon

emission.

Fig. 3 shows that the peaks are shifted to higher voltages

as LR is increased. This reflects a strong renormalization of

Fig. 4. Same as Fig. 2 but in three-dimensions.

Fig. 5. Maximum value of the power emitted as LO phonons for different barrier geometries (in 3-d) and 1F ¼ 10 meV: The symmetric

situations are marked with a downward arrow and the situations of optimized phonon emission are marked with an upward arrow.

L.E.F. Foa Torres et al. / Solid State Communications 124 (2002) 363–371 369



the resonant energies due to the asymmetry of the barriers.

We can understand this by noting that when a potential eV is

applied to the double barrier, the resonant energies are

lowered approximately by a factor aeV: Thus, for wider

right barriers the resonant energies are shifted to higher

values.

We can also see that the peak value of Pin; max(Pin),

exhibits a maximum as a function of the right barrier

width. This behavior is also present in the curve for Pin

as a function of the voltage V in three-dimensions

calculated according to Eq. (20) as can be appreciated in

Fig. 4.

In Fig. 5 we present max(Pin) versus LR curves for LL ¼

7a; 8a; 9a; 12a in three-dimensions, which correspond to

emitter lengths between 20 and 25 Å. These curves exhibit a

maximum for max(Pin) as a function of LR: The optimal

configurations correspond to asymmetric structures with

right barriers which are about twice of the left ones. Notice

also that the curves are shifted to lower power values when

the left barrier width is increased. This is due to a

corresponding increase in the reflectivity of the device.

These results confirm that, for a given LL satisfying

GL , �v0 and gGL þ GR . 1F ; the phonon emission rate

is enhanced (by a factor 2.5 in the case of Fig. 3) by

choosing a wider right barrier as prescribed by Eq. (17).

This explains the unusually large satellite peaks of

asymmetric structures [29]. In Fig. 6 the I–V curves

for the symmetric and the optimal asymmetric RTDs are

shown.

Let us consider RTD’s where these conditions

(GL , �v0 and gGL þ GR . 1F) are relaxed. One possi-

bility is to use wider left barriers. In Fig. 5 we see that the

trend is to flatten the optimum as we go to wider left barriers.

Hence, consistently with our discussion in Section 2, there is

no substantial gain in Pin by choosing an asymmetric

structure in these cases. Another possibility is to increase the

Fermi energy. In Fig. 7 we show Pin –V curves in three-

dimensions for various right barrier widths LR for

1F ¼ 20 meV. Comparison with Fig. 4, which corresponds

to 1F ¼ 10 meV; shows that the optimal geometry is less

asymmetric and that the optimization of the phonon

emission is weaker: a factor 2.5 versus a factor 1.4 in Fig.

7. This is also consistent with the behavior expected from

the analytical results.

4.2. Efficiency

In Fig. 8 we show the efficiency h, evaluated at the

optimal voltage, as a function of the right barrier width for

various LL where GL , �v0: In agreement with our

theoretical analysis, h keeps the same magnitude for all

the geometrical configurations shown in the figure.

Note also in Fig. 8 that devices with wide barriers have

efficiencies which are of the same order as those

corresponding to more transparent ones. However, the

power emitted as LO phonons in the quasi-transparent

barriers surpasses that of the opaque ones in two orders of

Fig. 8. Efficiency of the device to emit LO phonons as a function of

the right barrier width for various left barrier geometries in 3-d and

1F ¼ 10 meV:

Fig. 7. Power emitted as LO phonons as a function of the applied

voltage in three-dimensions for LL ¼ 7a (19.7 Å) and different

values of LR: In this figure, the Fermi energy is taken equal to

20 meV.

Fig. 6. Current density as a function of the applied voltage for a

symmetrical (thin line) structure and the optimized structure. These

results correspond to LL ¼ 7a (19.7 Å) and 1F ¼ 10 meV in three-

dimensions.
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magnitude. As a consequence, in order to obtain a high

emission of primary phonons, it would be advantageous to

construct a device with narrow asymmetric barriers as in the

optimum situations in Fig. 4.

5. Conclusions

In summary, we have proposed an alternative RTD-

based ultrasound emitter (SASER). We have analyzed in

detail the optimization of the geometrical parameters of

the RTD to maximize the emission of LO phonons. We

have shown, both analytically and numerically, that an

appropriate geometry of the barriers can substantially

enhance the phonon emission. In particular, we have

shown that for thin left barriers (of about 28 Å for

AlGaAs), the optimal configurations correspond to

collector barriers whose widths are about twice that of

the emitter. In contrast, for devices with wide barriers (of

about 68 Å for AlGaAs) the power emitted as LO

phonons is sensibly reduced and no appreciable geo-

metrical optimization is found. The validity of the model

employed requires a restriction of the decay into many

vibrational modes which could be achieved by

1F p �v0, or even better by frozen the transversal

degrees of freedom by applying a strong magnetic field

[6,7] or by lateral confinement.

Although we used parametrizations that describe the

especific case of electron–phonon interaction in stan-

dard RTD geometries, the essence of our analysis only

involves the optimation of an inelastic resonance for

electronic tunneling where each electronic state interacts

with an elementary excitation. This is a totally general

result, independent of the details of the model adopted

and hence the line of reasoning could also be applied to

many other problems regardless of whether the exci-

tations are of optical, magnetic or vibrational nature [9].
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