
J. Phys.: Condens. Matter 2 (1990) 1781-1794. Printed in the UK 

Tuning the through-bond interaction in a two-centre 
problem 

P R Levsteint, H M Pastawskit and J L D'Amato 
Instituto de Desarrollo Tecnol6gico para la Industria Quimica, Giiemes 3450,3000 Santa 
Fe,  Argentina 

Received 16 May 1989, in final form 22 September 1989 

Abstract. Two centres A and B connected by one or more sets of bridging states (pathways) 
define a graph in the space of states. The Hamiltonian is decimated in this space and the 
problem is reduced to that of two sites with corrected energies E ,  and E ,  and an effective 
interaction VAB. The goal of the method is to make evident how the pathways should be 
modified in order to tune the resulting coupling. The condition for maximum coupling is 
i', = EB (resonance) and is related to a generalised reflection-inversion symmetry while the 
coupling minimises if VAB = 0 (anti-resonance). This is a non-trivial situation allowed by the 
topology of the system which occurs when two or more pathways interfere destructively. 
The effects of resonances and anti-resonances in electron transfer and other applications are 
discussed. 

1. Introduction 

Many important problems in physics, chemistry and biology can be discussed in terms 
of the electron quantum transport from one centre A to another centre B, which may 
be separated by many bridging atoms [l]. We have been recently involved in two 
problems which are examples of this. One is the interaction between paramagnetic ions 
through polyatomic bridges [2] where the through-bond coupling is manifested in the 
superexchange parameter [3,4].  The other problem is the Aharonov-Bohm effect in 
metal rings and cylinders [ 5 ] .  Here the essential physics is the quantum diffusion of 
electrons from one contact to the other, travelling by the two branches of the ring, their 
relative final phases being dependent on the enclosed magnetic flux [6]. Here the 
coupling between contacts is manifested in the electrical resistance. 

Another problem that we have in mind is the biological electron transfer [7] from 
one centre to another which may be many inter-atomic distances away. A complete view 
of the phenomena must consider not only the effective adiabatic coupling but also the 
molecular vibrations. However, the first is manifested in the rate constant of the process, 
and therefore it is crucial to understand the parameters which control the process. 

All these problems admit description in terms of the quantum evolution which 
allows for a localised excitation (AIY(t)) = 1 to be found at site B after a time t, i.e. 
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( B l Y ( t  + z)) = 1. In all these cases the molecular orbital (MO) theory can be used as an 
adequate framework in order to describe the electron wavefunction. However, the 
number of states which are usually involved makes these problems tractable only numeri- 
cally with a consequent loss in physical understanding and generality. 

The purpose of this paper is to show how the natural topology in the space of states, 
defined by the main interactions, can be exploited. In this space, a decimation method 
is introduced. It allows easy manipulation of the problem by mapping it into a simple 
two-state effective Hamiltonian. The most important consequence of this method is that 
the analysis of the conditions under which the coupling is maximised (resonance) or 
minimised (anti-resonance) can be performed in a simple way. This result has a wide 
range of applications since it shows the possibility of tuning the electron transfer by 
controlling the bridging effects either by modifying the system or by applying external 
fields. 

The main results of this paper are presented as follows. In section 2 we introduce a 
set of tight-binding model Hamiltonians and we obtain the expression for the associated 
two-state effective Hamiltonian. An  analysis of the sign and the order of magnitude of 
the two-state effective interaction is presented for both periodic and non-periodic 
bridges. In section 3 we show how the decimation procedure can be extended to systems 
with non-negligible overlaps and multiple cross links. In section 4 the symmetry con- 
ditions to achieve an effective degeneracy (resonance) between the centres A and B 
are established. Also the consequences of quantum interferences in multiple bridged 
systems (anti-resonances) and the effects of a magnetic field are analysed. In section 5 
we discuss the dynamics of the electrons using the effective Hamiltonian and we present 
an application to a model system. We use these results to give insight into the effects of 
an inelastic interaction on the kinetic parameters. Section 6 summarises the most striking 
consequences of resonances and anti-resonances and includes a brief discussion of two 
particular problems whose basic understanding is provided by the arguments of this 
paper. These are the tuning of the exchange interaction and the conduction of electrons 
in multiple connected devices (Aharonov-Bohm effects). 

2. The model system and its decimation 

In order to clarify the physics we start with a model Hamiltonian which contains only 
the essentials. We reduce the original MO problem to a tight-binding model which 
neglects the non-orthogonality of the atomic basis set and allows only for nearest- 
neighbour matrix elements. Let us consider that the two atomic-like orbitals A and B,  
which we call ‘centres’, are connected by M independent pathways without mutual cross 
links, such as those shown in figure 1. All these restrictions do not reduce the generality 
of our results as will be shown in P 3; thus the eigenvalue problem to be solved is 

( ~ l  - H ) u  = 0 (2.1) 
where U is the array of site amplitudes of eigenstates with energy E ,  1 is the unit matrix 
and matrix H corresponds to the operator 
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(bl 0 <-> 
Here the E-values are site 
pathway I/ has N u  sites. 

When one writes (2.1) 

Figure 1. Schematic representation of the 
decimation procedure for systems without 
cross links: (a)  a system with reflection- 
inversion symmetry where interactions 
add constructively (resonant); ( b )  asystem 
for which interactions may interfere 
destructively (anti-resonant). 

energies and V-values are the hopping matrix elements. The 

explicitly for the amplitudes of the pathway p ,  it becomes 

- V$,u? + ( E  - E $ )  U $  - V$3uf = 0. 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

Taking U" from equation (2.3b) and substituting it in equations ( 2 . 3 ~ )  and ( 2 . 3 ~ )  gives 
us 

with 

( 2 . 4 ~ )  

(2.4b) 

Note that equations ( 2 . 4 ~ )  and (2.4b) have the same formal structure as equations ( 2 . 3 ~ )  
and (2.3b) respectively, but now the first site in the bridge is that with index 2,  which is 
connected to A through an effective hopping V i 2 .  Sites A and 2 have self-energy 
corrections A i  and A $ ,  respectively. This procedure can be repeated until the last site 
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of the bridge is eliminated. The effective interaction and self-energies are obtained with 
the recursive scheme 

Once all the pathways are eliminated, equation (2.1) becomes 

with 

(2.7b) 

( 2 . 7 ~ )  

(2.7d) 

The described procedure recognises some antecedents in the calculation of exact spectra 
[&lo] and localisation properties [lo, 111 in various solid state systems. In fact, since no 
approximation has been done yet, equation ( 2 . 7 ~ )  is equivalent to equation (2.1) for the 
determination of the eigenvalues because their secular determinants are proportional. 
EA and 8, are quotients of polynomials on E and the exact eigenvalues can be obtained 
with an iteration procedure. The only conceptual limitation of equation (2.7) is that it 
does not allow for the normalisation of the eigenvectors, although the relative amplitudes 
of uA and uB are correctly described. 

Before going further, let us discuss the meaning of equations (2.7b)-(2.7d). The first 
point to note is that we can obtain these values from a Brillouin-Wigner perturbation 
series [12, 131, which has the general form 

In particular, AX is the sum of all the journeys which starting from A return to A without 
having passed through site B. The reciprocal situation is valid for A i .  Since the term in 
equation (2.8) is just the irreducible term of the expansion of the Green function 
(il ( ~ l  - H)-lIf), it is not difficult to check that 

where H ”  is the restriction to pathway v of H ,  i.e. the molecular bridge Hamiltonian with 
the energies E; and eigenstate amplitudes a$. 
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The second point to note concerns the effective interaction which corresponds to the 
sum of all those journeys which having started from A have stopped once they reach 
point B, i.e. 

V j A B ( E )  = 2 VLl(ll(E1 - H’)-* ~ N u ) ~ ~ ~ B  
U 

(2.10) 

In order to solve (2.7a) it is convenient to make some approximations. For that purpose 
it is observed that, in the absence of site B, the exact eigenvalue associated with site A 
should be 

E* = EA + AA(E*) = EA + AA(EA) + ( ~ A * / ~ E ) ( E  - EA) + . . . 
= E A  + A A ( E A ) .  (2.11) 

Therefore, for a situation in which the bridging molecules do not have eigenvalues near 
E A  and hence A,(&) does not have singularities in the neighbourhood of EA,  we get a 
very good approximation by retaining only the first two terms. An identical analysis is 
valid to evaluate AB(&) and we obtain 

(2.12) 

Also the effective interaction can be evaluated by performing an expansion around E ,  = 
(E* + EB)/2:  

V j A B ( E )  = V;IAB(EO) + (aV,4B/aE)I~=E(r ( & - - E o )  + .  . . 

= V A d E d .  (2.13) 

The first term is enough to give an approximation compatible with that of A.  This readily 
allows us to estimate the coupling with a pocket-held calculator as well as to discuss 
the fundamental physics involved. If a better approximation is desired, the corrected 
energies can be evaluated by a few iterations of equations (2.11) and (2.12). Simul- 
taneously a good estimation of the slopes aA,/d~ and aA, /a~  can be performed. 
Conserving the linear terms in E in the expression for A(&)  but only the term independent 
of E in VAB, equation (2.7) gives a result identical with that of an &-independent site 
energy with a further correction in the hopping parameter: 

V A B  = V,B ( E o ) / d (  1 - (8 A */a E )  1 E = E O )  ( 1  - (d A B  /a E )  I E = E O ) .  (2.14) 

This new value accounts for the ‘reaction’ of the site energy when the hopping tends to 
‘push’ the levels apart. With these corrections a high degree of accuracy is obtained in 
the computation of the eigenvalues E’ and E- associated with the symmetric and anti- 
symmetric combinations of centres lA) and IB). 

We end this section by discussing some properties of the effective interaction through 
a given path. The key point is to observe that this portion of the systemis topologically one 
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dimensional, and for this situation the old result in [ 141 holds for each path contribution to 
equation (2.10), which becomes 

VkB(E) = v i l  [fil . i + 1 / i l  ( E  - E L ) )  Vh,,B* (2.15) 

Equation (2.15) makes it evident that the bonding hopping elements contribute with a 
sign (- 1 ) " ~ ~ ~  while the energy denominators contribute with a sign (- l ) N u n ,  where Nu, 
is the number of unoccupied states in the bridge. This gives for the hopping an overall 
sign of (- 1)'"0c+~ where No, is the number of occupied states. This result gives a formal 
proof of the ideas in [15] about the symmetry of the ground orbital and is consistent with 
more recent numerical simulations [16, 171. 

A further analysis of the amplitude of the Green function developed in [18] for a 
chain of asymptotically large length, which may be either periodic or random, allows us 
to evaluate the magnitude of the interaction as 

VAB(4 = (Y41V.m/(V)J [eXP[-N/VE)I (N-+co) (2.16) 

where (V), is the geometrical average of the inter-site hoppings in the bridge, and the 
attenuation length A in the exponent is given by the dispersion relation 

E - El 
d N(E'). 

1 
(2.17) 

with N(E) being the distribution of states of the chain. The integral (2.17) can be 
evaluated explicitly for bridges which have a periodic structure and allows us to obtain 
an attenuation length which is useful even for short bridges. For long aperiodic chains, 
some bounds for A can be established [19] in terms of the parameters which characterise 
the randomness. 

3. The general decimation procedure 

The models discussed previously were selected to have a very simple topology. In this 
section we show how the described procedure can be extended. The key point is to 
truncate the range of overlaps and hopping elements so that local states can be divided 
in sets with an ordinal sequence where only consecutive sets are linked. Then, the 
Hamiltonian and overlap matrices in Roothaan's equation 

(ES - H)u = 0 (3.1) 
have M paths connecting states A and B which are tridiagonal in blocks. Now the 
recursive formulae have the same expression as equation (2.6) with the replacements 

(E - Er) - '+  (ES; - H;)-' (3.2) 
where H; and S; are II X II matrices corresponding to the restriction of the Hamiltonian 
and overlap to the set i of path v. The new hoppings are 

-V11+1+ (&SI,+' - HIl+l) (3.3) 
where again VI*+' and SIL+' are n X m matrices which link the sets i and i + 1 having n and 
m states, respectively. Note that, if there is no direct overlap between A and B centres, 
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Figure 2. Schematic representation of the steps in 
the decimation of a complex system: ( a )  decim- 
ation of dangling ends; ( b )  decimation of linear 
portions; (c) matrix decimation of cross linked 
backbone. 

the reduced two-state problem will not involve overlaps since all the non-orthogonality 
effects are automatically included in E,, E ,  and VAB. 

In some cases, as shown in figure 2, it could be convenient to mix matrix and scalar 
decimations. In these cases a possible sequence is 

(i) to decimate all the dangling fragments of the bridge as well as the terminal ligands 
LA and LB (the consequence of this step is the renormalisation of the site energies), 

(ii) to decimate all the linear portions of the bridging system and 
(iii) to treat the remaining sites with the matrix procedure, a step which sometimes 

In figure 2 the inversion symmetry of the bridging system allows us to decouple it 

allows further reduction. 

into two independent chains. 

4. Resonances and anti-resonances 

Once the effective Hamiltonian parameters involved in equation (2.7a) are obtained 
with the approximations in equations (2.11)-(2.13), the natural parameter to measure 
the magnitude of the coupling is 

v = IvABI / IE, -EBI .  (4.1) 

E A  = E B .  (4.2) 

The coupling is strong if y 1 and in particular it would diverge when 

This is what we call the resonant condition, in which the splitting among the final levels 
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is 2vAB. It is interesting to remark that strong coupling is not assured by the condition 
VAB S V,,,,. This situation could occur, for example, when there is an eigenstate in the 
bridging molecule with energy E,  near E,. From the analysis of the leading terms in 
equations (2.9) and (2.10) with the condition IE,- E,I <IEp - EoiV/3 # LY, we get 

r = IVA1~;’,*~~~,V,l/lV*,a~,l~ - IVmaX,I2. (4.3) 

In this case, the generalised symmetry required for resonance is 

Dimers in which the centres A and B are related by reflection or inversion symmetry 
are cases which satisfy equation (4.4) trivially. The non-obvious consequence of this 
equation is that an asymmetry on the V-values may be compensated by the bridging 
molecule through a reciprocal asymmetry in the amplitudes at its edges. In linear 
bridging molecules, the weak-coupling condition, q G 1. is a manifestation of the lack of 
generalised symmetry. 

A new possibility arises when there is more than one pathway. This is because 
different contributions to the effective hopping may have opposite signs allowing mutual 
cancellations: 

VAB = 0. (4.5) 

Since in this situation the coupling vanishes even when the symmetry may allow for a 
resonance, we call equation (4.5) the anti-resonant condition. This implies that the 
excitation in A propagates through all the bridges but interferes destructively when 
arriving at site B.  In order to evaluate the possiblity of an anti-resonant situation for 
molecules with multiple cross links or non-nearest neighbour hoppings the predominant 
backbone should be identified. The destructive interference depends on the resulting 
topology. In our model, it requires that the numbers of occupied states in the bridges 
have different parities. This is the situation depicted in figure l (b ) .  The exact anti- 
resonant condition given by equation (4.5) has in practice a low probability of occur- 
rence, but the destructive interference effects must be taken into account in engineering 
the bridging systems. Interactions do not always sum constructively. 

The anti-resonant situation can also be achieved by the application of either elec- 
trostatic or magnetic fields and shows the Aharonov-Bohm effects. The effect of an 
electrostatic field is quite obvious in the geometry of figure 1 if we consider that the field 
produces a potential difference between the branches. Since their respective energy 
levels are shifted. the effective hoppings are also modified. If the energy shifts are large 
enough to modify the occupation of the states, the sign of the interaction changes, and 
the interference condition varies from destructive to constructive or vice versa. 

The effect of the magnetic field is somewhat more subtle. Here we note that the 
presence of a magnetic vector potential A gives a different phase to each hopping 
element. Thus, for a case with two pathways, the effective hopping between contacts A 
and B becomes 

V A B  = vk3 exp(i2nqkB/FO) + V%B exp(i2n~$.B/qO) (4.6) 

where rp, = h/e ,  and the phases are calculated as path integrals along each pathway: 
q L B  = Jz A dS,  and q t B  = Jx A dS,. They are related to the total magnetic flux 
threading the system: rp = rp kB - rp iB. The system has fixed amplitudes for the inter- 
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action through each pathway (branch), but the total hopping will oscillate with q. For 
q~ = (n + : )q0 the effective coupling changes the sign of the interference, verifying that 

lvAB(qJ)12 = (VLB)2 + ( V g B ) 2  + 2VLBvi#B cos(2nq/qO). (4.7) 
If 1 V i B  1 = 1 VgB 1 ,  the exact anti-resonant situation can be achieved. 

5. Resonances and the rate of electron transfer 

In the study of the time-dependent quantum transfer probability PAB(t), it is important 
to evaluate how the maximum value P,,, and the characteristic time zq at which quantum 
interference becomes important depend on the parameters of the system. This time, in 
terms of the exact eigenvalues of the system E+ and E - ,  the result is 

z q  = h / / E +  - E -  1 .  (5.1) 
We are going to discuss the consequences of the bridging conditions in three model 
systems using the decimation scheme developed in section 2. Within the effective 
Hamiltonian approximation (equation (2.11)-(2.13)), (5.1) becomes 

z q  = h / v ( E A  - EB)’ + 4/v,B l 2  (5.2) 
and defining 

P,,, = 4?7/(4$ + 1) = 4v$&t;/h2 (5.3) 
the time-dependent transfer probability results: 

PAB(t) 2 P,,,, sin2(t/2zq). (5.4) 
A comparison of these simple expressions with the exact results will show how the 
effective Hamiltonian approximation works. Simultaneously, it will allow us to discuss 
simply the rate constant in the non-adiabatic limit. 

5.1. Model examples 

We start by considering as example a the system represented in figure l ( a )  in which N ,  = 
N p  = 4. For simplicity we have selected all hoppings Vlltl = - V, and site energies E A  = 
E,  = 4V, E: = Ef” = 0. The symmetry of the problem shows that the coupling is 
resonant. The corrected energies are E A  = E,  + 2A = EB = E ,  = 4.53659V, with 

A = V 2 / { E  - V2/[E - V 2 / ( E  - V’/E)]} = 0.2679V. 

Note that the continued fraction is a convergent function of the bridge length [11], of 
the form 

[ A ( N )  - A(N + l)] - A(=) exp(-N/2A) 

l/A(E”) = cosh -’ (E0/2V) = 1.44.  . .. 

( 5 . 5 )  

(5.6) 

with A calculated for an infinite bridge, in which case equation (2.17) becomes 

For the hopping parameter we have 

V A B  = 2V2G,\?(E”) = (-v)”+2/fl ( E ,  - E,) 5.5 x 10-’v 
n 

with eigenvalues given by E,  = 2V cos(an/N + 1) ( a  = 1 , 2 ,  . . I ,  N ) .  Although N = 4 
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Figure 3. Exact time dependence of the quantum 
transfer probability PAB for resonant (curve a), 
non-resonant (curve b) and nearly anti-resonant 

0 300 600 (curve c) systems. The chosen parameters pro- 
f V / E  duce a similar magnitude for the effective hopping 

through each pathway in all cases. 

represents a small chain length, we see that equation (2.16) still gives a good estimation 
for the effective hopping: 

VAB = 2Vexp( -N/A)  = 5.8 x 10-3V. 

In the resonant case we expect that, if the two-state approximation were good, most 
charge placed at site A at t = 0 should be found at site B at time t = n6/2V,B. The exact 
evolution calculated from the complete Hamiltonian is shown in figure 3(a). Note that 
the main oscillation of the form of equation (5.4) is not affected very much by the small 
high-frequency oscillations that are superimposed. Even when there is a defect from the 
maximum transfer probability, we can consider the two-state approach as a good enough 
approximation. 

As a second example (example b) it is interesting to examine what happens when the 
system is displaced from the resonant condition. This occurs if sites A and B in figure 
l(a) are displaced slightly to the left SO that V i l  = Vg1 = -0.98V and ViB = Vl;, = 
-1.02V. In this case, both I?, and V A B  do not differ essentially from the previous 
values, but now EA = E, + 2 x O.9S2A and EB = E,  + 2 x 1.022A. Thus, the coupling 
parameter is 7 = 0.13 which implies poor coupling. From the analysis of equation (5.3) 
we predict a 4q2-value of about 0.07 for the maximum probability of transfer. This result, 
easily predicted within our model, agrees with the exact situation in figure 3(b). It is 
worthwhile to remark that a 2% variation in the hopping parameters at the contact sites 
implied a reduction in the characteristic time by a factor of 4. To a crude approximation, 
it can be considered that this is a way in which the vibrations (phonons) of the molecule 
should alter the coupling. This in turn introduces an irreversible process in the one-body 
Hamiltonian which breaks the quantum coherence of the tunnelling process. 

In both the above examples a and b, the characteristic times evaluated with the 
effective Hamiltonian approximation have errors of around 10%. These errors become 
lower than 1% if the refined hopping in equation (2.14) is used. This could be below the 
error of estimation of the MO parameters. Note also that the two-state approximation 
predicts at short times a dependence of P A B  of the form 

PAB ( t )  = ViBt2/fi2 (5.7) 

for both the resonant and the non-resonant situations. This is in agreement with the 
exact solutions for examples a and b shown in figure 3 which coincide at short-time 
regimes. 
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As a final example (example c) we consider an anti-resonant situation. This is 
illustrated by the system in figure l ( b ) ,  where all the parameters are the same as in the 
resonant case except for the shorter chain, where we selected Vkl = ViB = -0.4V to 
represent the longer bond length. 

Considering that the self-energy does not depend much on the bridge length, we 
estimate the energy shift as 

E ,  = EA + 0.42A = 4.3108V. 

Since the two bridges have different parities for the number of occupied states, VAB is 
near the anti-resonant condition 

V A B  = V2GTd(Eo) + 0.4*V2G74(Eo) = 1.2 X 10-3V. 

Thus the characteristic time for the maximum transfer is 5.6 times, that of the resonant 
case. Again the exact dependence on time, shown in figure 3(c), is in good agreement 
with the results of the two-state approximation. 

5.2 The rate of transfer 

Up to this point we have been concerned with the time evolution of an electron described 
by both exact and effective one-electron Hamiltonians. However, we have pointed out 
that additional interactions not included in this Hamiltonian will destroy the phase 
coherence of the evolution after a characteristic time Tin. Examples of these 'inelastic' 
interactions are electron-electron, electron-phonon, spin-flip and other interactions, 
depending on the problem. This gives a probability exp(-t/t,,) dt/t,, that the first 
inelastic collision occurs in the interval ( t ,  t + dt). We may interpret zin as the mean time 
at which the first collision occurs. After this a new quantum evolution starts until a 
second collision occurs at the mean time 2 t , ,  and so on. This defines a classical Markovian 
process. Following the conceptual scheme which has been very useful in the under- 
standing of quantum transport [20], it is possible to define a rate for this process as the 
mean probability of transfer in a single collision divided by its characteristic time: 

where we have used equation (5.4) in the evaluation of the integral. From this equation 
we observe that the effective Hamiltonian parameters determine an upper bound for 
the rate of transfer. In fact, the rate has its maximum value Pmax/4zq at t,, = zq. 

In the regime zq =e z,,, equation (5.8) becomes 

kAB = (2n/fi>ViB[(1/~tfi> ( ~ ' , / t m > I .  (5.9) 
Observe that, in the weak-coupling (7 1) regime, VAB and tq are independent 
variables. Some cases of biological interest in which electron transfer seems to occur 
under these conditions are believed to be phonon assisted [21]. Consequently, t,, should 
be temperature dependent and (llnfi) (T;/Z,,) can be identified with a generalised 
Franck-Condon factor which is an increasing function of temperature. An increase in 
this factor or in the effective hopping reflects in an increase in the rate constant. This is 
in agreement with more complete evaluations of the rate constant [22,23]. 

Related transport phenomena in disordered solids occur in the variable-hopping- 
range regime. In this case, electrons tunnel between well separated impurity 'sites' with 
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energy close to the Fermi energy. The most difficult of these hops determines the 
behaviour of the conductance which is proportional to iVAB12. This argument was 
recently used to predict universal fluctuations as a function of electric [24] and magnetic 
fields [24], and to determine the sign of the magnetoconductance [25 ,26] .  The essential 
point is that these fields modify the interference between the different pathways con- 
necting the relevant sites according to (4.6) and (4.7). 

In cases where tq  S z,, the rate becomes 

k A B  = 1?:~7,,/h’. (5.10) 

This regime controls the spin diffusion in a lattice at high temperatures. In this case, 
VAB must be formally identified with the exchange constant JAB in the Heisenberg 
Hamiltonian. Here, 7,, = ah/VAB, with a < 2, comes from a ‘many-body’ effect [27]. 

6. Discussion 

\.lie have presented a systematic procedure to reduce some apparently complicated 
problems to effective two-state ones. Several interesting consequences can be summar- 
ised. 

(i) For a topologically one-dimensional bridging molecule the sign of the interaction 
depends on the parity of the number of occupied states. 

(ii) The coupling is maximised (resonance) if the condition of generalised inversion- 
reflection symmetry is satisfied. 

(iii) Small modifications of the centre-bridge hoppings as well as of the terminal 
ligands destroy the resonant condition. 

(iv) The coupling is minimised (anti-resonance) if the effective hopping is zero. This 
is a consequence of the topology of the system which allows contributions from different 
bridges to cancel each other. 

(v) By controlling some of these variables it is possible to tune the coupling. This 
may be obtained either by changing the bridge so as to modify some of the hopping 
parameters and/or the site energies or by applying external fields. 

As an application of these ideas we may mention the interpretation of magneto- 
structural correlations. The use of the decimation scheme in the one-bridge problem 
shows that the effective hopping is proportional to the product VAIV,VB. With this in 
mind and using the approach in [3,4] to estimate the superexcbange parameter, we can 
correlate this value with some structural parameters. In particular, the case of two 
copper(I1) centres connected by an asymmetrical carboxylate bridge was studied by one 
of us [2]. Experiments show that strong differences in the exchange constant J are 
correlated with changes in the distance which determines V,41, i.e. the coupling of one 
copper atom with the bridge. These magnetostructural correlations will be reported 
elsewhere [28]. 

A closely connected problem is the design of bimetallic systems exhibiting predictable 
magnetic properties. One of the recent experimental advances [29] in this direction was 
the synthesis of ferromagnetic heterobimetallic dimers. This can be understood by 
noting that an increase in lEA - EB1 lowers the coupling and hence the kinetic (anti- 
ferromagnetic) contribution to JAB, without affecting the ferromagnetic contribution 
which arises from the through-bond and through-space overlap. Similar phenomena 
were seen in homobimetallic dimers by modifying the terminal ligands LA and L B ,  which 
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play the role of ‘adjusting screws’ in the interaction. A novel prediction from our work 
is that the kinetic contribution can also be minimised by engineering a bridge molecule 
so as to approach the anti-resonant condition. 

A striking manifestation of anti-resonances in solid state systems are the Aharonov- 
Bohm-like oscillations in the conductance of mesoscopic metal and semiconducting 
rings. Perfect leads are branched at centres A and B which are connected by two 
pathways enclosing a magnetic flux y .  At temperatures low enough that zq < t,, a 
quantum evolution is expected for the electron with the Fermi energy = Eo. It is 
important to note that this is different from the closed systems discussed until now 
because these effects [6] imply an open system, i.e. a system which allows the electrons 
to move in and out of the sample. The connections of points A and B to the external world 
(reservoirs) through the leads provide continuum energy spectra which are expressed as 
extra complex contributions to E A  and EB (2.12). This causes the electron evolution 
from A to B to be non-local but to depend on the connections of these sites to the leads, 
Therefore, a good description of the transport in such a system must be achieved [30] 
using the transmission probability coefficients evaluated at the Fermi energy which 
depends on both the effective Hamiltonian parameters (2.7) and the boundary con- 
ditions representing the connection with the external world. A complete analysis of that 
problem is beyond the scope of this work and is the subject of a separate publication 
[31]. However, we wish to stress the following observations related to the main results 
discussed here. As the Fermi energy is moved, a maximum (resonance) in the trans- 
mission probability (and hence in the conductance) is observed whenever the condition 
(4.2) is satisfied. A minimum (anti-resonance) in the transport coefficient appears when 
the condition (4.5) is reached. Also, at least in the strong-disorder regime (A less than 
path length) the oscillations of the magnetoconductance can be explained in simple 
terms. In that regime, the interaction with the external world is weak and the conduc- 
tance, just like (5.9), is proportional to i V A B ( y ) ~ 2 .  If the parities of the numbers of 
occupied states are the same for both branches, the interference is constructive and it is 
weakened by a magnetic field according to (4.7). In the opposite situation, if these 
parities are different, the magnetic field is able to reduce the destructive interference. 
In both cases, the characteristic period of the magnetoconductance oscillations is 
Aharonov-Bohm-like (qo = h/e). We point out that, in the weak-disorder regime, the 
interaction with the external world is essential to account [31] for the observed yo/2 
period. 
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