
Surface Science 57 (1976) 323-347 

0 North-Holland Publishing Company 

EFFECTIVE SURFACE POTENTIAL METHOD FOR 

CALCULATING SURFACE STATES* 

E-Ni FOO 

Department of Physics, Drsxel University, Philadelphia, 
Pennsylvania I91 04, USA 

M.F. THORPE 

Department of Engineering and Applied Science, Yale University, 
New Haven, Connecticut 06520, USA 

and 

D. WEAIRE 

Department of Physics, Heriot-Watt University, Edinburg EHI4 4AS, UK 

Received 30 September 1975; manuscript received in final form 2 February 1975 

A novel formalism (the effective surface potential method) is developed for calculat- 

ing surface states. Like the Green function method of Kalkstein and Soven and the 

transfer matrix method of Falicov and Yndurain, the technique is exact for simple tight 

binding Hamiltonians. As well as offering an alternative viewpoint, the present method 

provides a simple analytic expression describing the surface states. At each point ks in 

the surface Brillouin zone the semi-infinite solid is viewed as an effective linear chain 

where each element of the chain is a planar layer. The solution to the linear chain prob- 

lem can be expressed in terms of an effective potential h(k,,E) at each energy E. A num- 

ber of examples are presented in detail; “spd” Hamilton&s for a linear chain (d = l), 

the honeycomb lattice (d = 2), the 111 surface of silicon (d = 3), and a dissected Bethe 

lattice. Various exact results are given, e.g. the extremities of surface state bands and the 

surface density of states of p-like (delta function) bands. The results of Kalkstein and 

Soven for the 100 surface of a simple cubic solid with a perturbation on the surface 
layer are rederived. 

1. Introduction 

There has recently been a considerable amount of effort, both experimental and 
theoretical, to develop an understanding of the electronic properties of surfaces 
from a basic viewpoint. Much of this effort has been directed toward understanding 
the Si 111 surface. The most elaborate and successful calculations are those of Ap- 

* Work supported in part by N.S.F. 
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Appelbaum and Hamann [l] who have performed fully self-consistent pseudopo- 
tential calculations, allowing for surface relaxation and charge redistribution. Simi- 
lar results have been achieved by Pandey and Phillips [2] , who use a semi-empirical 

tight binding Hamiltonian and 8 parameter. These parameters are chosen so that 
the bulk band structure of Si, using pseudopotentials, is reproduced as well as pos- 
sible. Pandey and Phillips use finite thicknesses (- 20 atomic layers) in order to 
facilitate the calculations. Their results are most readily expressed in terms of a 

local density of states but they can also extract the surface dispersion curves. Sim- 
ilar calculations have been done by Chadi and Cohen [3] . 

These calculations suggest that many of the features of surface states do not de- 
pend on the precise details of these calculations or the model used (e.g., whether 
there is a surface state in the band gap). With this in mind we decided to investigate 
some simple model Hamiltonians of the tight binding kind using simple but exact 
techniques based on what we shall call the effective potential method. We have 
been able to find algebraic expressions for a number of quantities. However, inas- 
much as our results are significantly different from those of Appelbaum and Ha- 
mann [l] , and Pandey and Phillips [2] , it appears that only some aspects of the 
surface problem are governed by general considerations, whilst many others are ex- 
tremely sensitive to both the model and to surface reconstruction, Nevertheless, 
we feel the method is of fairly general application and we present it here together 
with a number of examples of its use. In addition, we plan to apply the method to 
the calculation of vibrational states near the Si 111 surface. Simple force constant 
models are quite realistic in this case and the results may be less sensitive to surface 
reconstruction. After this work was substantially complete, we became aware of 
work on 111 surfaces of Si and Ge that uses the transfer matrix method by Falicov 
and Yndurian [4] which we will abbreviate by FY. 

Like the Green function method of Kalkstein and Soven (KS) and the transfer ma- 

trix method of FY, the effective surface potential method is exact for simple tight bind- 
ing Hamiltonians. However, they differ not only conceptually but also in their cal- 

culating procedures. In the KS method the semi-infinite crystal is formed by pass- 
ing an imaginary cleavage plane in some crystallographic direction of the infinite 
crystal. The hopping integrals which couple the two cleaved half-crystals are set 
equal to zero. The difference between the cleaved half-crystals and the infinite crys- 
tal Hamiltonians is then treated as a scattering potential. Thus the Green function 
for the cleaved half-crystals can be expressed in terms of the bulk Green function 
and the scattering potentials introduced by the cleavage plane. On the other hand, 
the FY method is closely related to the conventional LCAO method in which a set 
of equations of motion has to be solved simultaneously. As pointed out by FY 
themselves, their method, which involves a repetitive procedure, is straightforward, 
but long and cumbersome [4] . In comparison, the effective surface potential meth- 
od outlined in this paper provides a very simple, transparent and concise analytic 
expression for the surface Green function. 

The layout of the paper is as follows. In the next section we describe how a linear 
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(2) 

The local density of states at the ith atom is then given by: 

pii = -+Im(ilGli), (3) 

where E has a small positive imaginary part. The Green function for this system 
may be written: 

(4) 

using (1) and (2). The atoms are labelled from 0 to M with the 0th atom being the 
surface atom. The Green function at the surface may be written as: 

g = (OIGIO& = l/(E - h), (5) 

where h(E) is a self-energy representing the one-sided chain. It is clear that for an 
atom in an infinite system the bulk Green function would be 

g’ = (OIGIO), = l/(E - 2h), (6) 
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because there is a self-energy for both the left and right pieces of the chain, starting 
from a single atom. Eqs. (5) and (6) show that the Green function for a surface and 
bulk atom are related in the linear chain by 

2/g== l/g’+E. 

The effective potential h can be calculated directly from (4) and (5): 

(7) 

(8) 

from which we get a quadratic equation for g: 

(Vg)2-2ar(Vg)+l=O, (10) 

with 

Ly =E/2V* (11) 

We therefore obtain: 

g= [cY+(C?- r)r’2]/v, (12) 

where the ambiguity in the + signs is removed by requiring that: 

Im (8) < 0 for values of E slightly above the real axis. (13) 

There is no surface state in (12) as the density of states lies entirely within the bulk 
band defined by Itul < 1. Note that by inserting eq. (12) into eq. (7) we obtain the 
usual bulk Green function: 

g’= 51/2V(a2- 1)1’2, (14) 

where again the ambiguity in sign is removed by applying the condition (13). 
The Green functions for all the other atoms may be found easily by noticing 

that because of the condition (9) we may terminate the continued fraction at any 

level so that: 

E VO 

VE V 

0 vg-’ 

and that for example 
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A 

generalized to more complex linear chain systems. For 
example, fig. 1 shows a chain with two kinds of interactions, VI (which might rep- 
resent s-p splitting on a single atom) and V (which might represent a bonding- 

interaction). The for this system is: 

H=-C[VI]2i)(2i+ 

(E2 t V2 - V;)/%EV. (20) 

One notices that a! has a pole at E = 0 which implies the existence of a surface 
state at that energy provided that the residue of the Green’s function is non-zero. 
The condition (13) implies that this happens only if VI/L’ < 1, which is the so- 
called Shockley [5] state shown in fig. 2. 

- v, - 

- 
--v- 

Fig. 1. A linear chain with two states/atom. The interaction VI represents the s-p splitting on a sin- 
gle atom (denoted by a solid circle) and the interaction Vseparates the bonding/antibonding states. 
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EO 

Fig. 2. The allowed energies for the chain shown in fig. 1. The bulk bands are shown together 

with the Shockley state at E = 0 for VI/V < 1. The energy is measured in units of V. 

3. Simple cubic 100 surface 

The method we have developed can be illustrated most easily for the case of the 
100 surface of a simple cubic material. We use a simple tight binding Hamiltonian: 

H=-I/C]i)(i+61, (21) 
(ifi) 

where i goes over all the sites and 6 goes over all the neighbors of i and the brackets 
( ) mean no double counting. The wave vector parallel to the surface k, can still be 
used to classify states and so we may regard the present problem as being formally 
equivalent to a linear chain problem at each k,. The effective linear chain has a 
Hamiltonian like (1) but with an additional diagonal term: 

-2V [coskxa + coskya] , (22) 

that arises from the interaction of an atom with its four neighbors within a plane 
(the z axis is perpendicular to the surface and the nearest neighbor separation is a). 

We have put k, = (k,, ky). The Green function G [analog of eq. (4)] becomes: 

G= 

E+2V(coskxa+coskJ,a) 

i 

V 0 0 . 

V E+2V(coskxa+coskya) V 0 . 

0 V E+2V(coskxa+coskya) V 

. 
: 

(23) 
and the self-consistent equation for g [analog of eq. (9)] becomes: 
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( Et 2V(coskxa + COSkf) v -l 
g= 

V g 
-1 1 00 

(24) 

which has the solution given by eqs. (10) and (11) with: 

CY = [E + 2V(COSkXfz + coskya)] /2v. (25) 

Eqs. (5)-( 13) still hold as long as we apply them at a particular k,, and make the 
replacement 

E-+E + 2V(coskxa + cask/z). (26) 

Now suppose an extra diagonal potential U is placed on the surface atoms only. 
The new surface Green function gu is related to the old one (with U switched off) 
via the Dyson equation, i.e., 

gu =g+gQ&, gu = l&g-l - u). 

Using the result (17) for (OIGIO) =g, we find that: 

(27) 

g 
u 

=g’ 1 + 1 -u--20 
1 +(E+2U)g’ 1 ’ (28) 

This result is the same as found by Kalkstein and Soven [6] [eq. (2.20)] The 
Green functions away from the surface in the presence of the perturbation U may 
be found in a similar way. 

All the basic principles of the method of calculation have been illustrated in this 
section. The calculation has three parts: 
(a) The solid is sliced into planes so that an effective linear chain can be defined for 
each surface wave vector k,. 
(b) The bulk information is summed up in a Green function for each k,. 

(c) A finite matrix is set up that is terminated outside the range of reconstruction 
by the inverse Green function found in (b). 

The 100 surface of the simple cubic lattice is sufficiently simple that the meth- 
od is of no advantage. However, in more complex geometries such as those dis- 
cussed in the next two sections, it provides a very compact way of approaching the 
problem. 

4. The honeycomb lattice 

A more complex geometrical arrangement is provided by the honeycomb lattice, 
a portion of which is shown in fig. 3. The Hamiltonian is constructed from “sp2” 
orbitals labelled Iv), where i denotes the atom andj the bond. Three directed orbi- 
tals such as those labelled 1, 2, 3 in fig. 3 can be formed at each atom. The Hamil- 
tonian is then 
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Fig. 3. A part of a surface of a honeycomb lattice with the states labelled. The atoms are rep- 
resented by solid circles. 

(29) 

where V is the bonding/antibonding interaction and V, leads to the s-p splitting 
on a single atom 171. The notation i’ means that atom i’ is a nearest neighbor of 
atom i and similarly j’ denotes the other state on the same bond j. In the bulk crys- 
tal this leads to a 6 X 6 matrix to be diagonalized at each bulk k vector and the 
eigenvalues are easily shown to be (see appendix I): 

VI rt: v, (30) 

E2(k) = 1 + 4 cos2 (kx a) t 4 cos ($_a) cos (4 kz a) (31) 

and z is perpendicular to the surface and the near neighbor distance is S/d. The 
band edges occur when E = V, 5 V, -2 VI f V, and are shown in fig. 4. The bulk 
density of states has delta functions at VI f V which are p bonding/antibonding in 
character. This is a result of using a simple model IIamiltonian with only near neigh- 
bor interactions. 

The self-consistent equation for the Green’s functiong [analogous to eqs. (9) 
and [ 19)] can easily be written down. The rows and columns of the matrix are la- 
belled sequentially corresponding to the states 1 to 7 as in fig. 3: 

, 

g= 

i 

'E VI VI 0 0 0 0 

VI E VI P-7" 0 0 0 

v1 "I E 0 V-y 0 0 

0 VT 0 E VI VI 0 

0 0 vy* VI E VI 0 

0 0 0 VI VI E V 

000 0 0 V g- 
.l 

i 00 

’ -1 

(32) 
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l!l.bL ‘- 
I 1 

Fig. 4. The bulk energy bands for the honeycomb lattice in the vicinity of the gap are shown by 

vertical shading as a function of Vi/V and E measured in units of V. The surface band in the 

gap region is shown by the solid area. 

The matrix is now much larger because of the more complex structure. One has to 
go into the bulk up to orbital 7 until one reaches an orbital “equivalent” to 1. Also 

Y = exp ($ a/2), (33) 

where a is the distance between atoms on the surface. This equation leads to a qua- 
dratic of the same form as eq. (IO) for g. Because of the high symmetry of the ma- 
trix in eq. (32), it is easy to show (see appendix II) that g obeys eq. (10) with: 

2cXV={I++ (E*-V;)]*t [EV*-(EtV,)(E-2V,)]* 

-4V~V*ti[V*t(EtV1)*]} 

and 

x {[?-(&I$] [EV*-(EtV,)*(E-2Vl)] -4V;V*c*[EtVJ-l, 

(34) 

c = (y + y*)/2 = cos (kX a/2). (35) 

From eq. (34) the surface Green function g can be calculated. The quadratic 
equation (10) always has two solutions. However, the imaginary part of g must be 
negative if a small imaginary part is added to the energy [condition (13)] . The two 
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solutions to eq. (10) must have imaginary parts with opposite signs and real parts 
with the same sign and so only one is acceptable by condition (13). 

The allowed energy bands are shown in fig. 4. The bulk bands are of a bonding/ 

antibonding character when V, /V < 2/3. A surface Shockley band exists in the gap 
region in this regime. The lower band limit of the Shockley state occurs at the F 

point (k,a = 0) and is a root of the cubic equation 

EV2 =(E2- V;)(E+2V1), (36) 

whereas the upper band limit of the Shockley state occurs at the zone boundary 
(i.e., k,a = n) and is a root of: 

EV2 =(E- V,)2(E+2V;). (37) 

The lower part of the band merges with the bulk bands at the crossover point 
(VI/V = 2/3) and the upper part merges with the bonding band when VI/F’ = 4/9. 
In fig. 5 we show the surface dispersion curves for VI/V= 0.4. The shaded regions 
are the bulk bands projected onto the surface. The band edges are defined by put- 
ting cos(fik,a) = *l in eq. (31), i.e., 

e(kx) = 1 * 2 cos(k/z) (38) 

kx- 

Pig. 5. The surface dispersion for the honeycomb lattice as a function of k, the surface wave- 

vector. The energy E is in units of V and the ratio VI/V = 0.4. The zone boundary corresponds 
to k,a = TT. The shaded regions are the bulk bands projected onto the surface and the solid lines 

are localized surface states. The dashed lines are the bulk p bonding/antibonding states. 
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and then inserting e(k,) in eq. (30). It may be seen that at the zone boundary of 

the surface Brillouin zone (which is a straight line) e(k,) = 1 and the bulk bands 

have no width and are located at: 

(39) 

It is particularly easy to solve for the Green’s function at this point. From eqs. (10) 

and (34) (with C = 1) we find that: 

v*-(A v;, 
g= 

EV2-(EtV1)2(E-2VJ~ 
(40) 

The other solution to (10) is unacceptable because it does not satisfy condition 

(13) and also because the condition Eg - 1 for large E is not obeyed. We see that 

there are only three surface states at the zone boundary (k,a = rr) as shown in fig. 5. 
In fact, this is true for the whole zone although one of these roots “jumps” from 
the valence band to the conduction band at the point k,a = 2n/3. The denominator 
of (34) allows up to five surface states from the fifth order polynomial in E in the 

denominator ~ however, two of these always occur in the unacceptable solution 
for g in eq. (10). 

, 

The local density of states for various surface states is shown in fig. 6 together 

r4 

.2 FIRST 

Am 
-2 -I 0 E 

I 2 

Fig. 6. The surface density of states for the honeycomb lattice for the first five layers in from 
the surface and for the bulk. The energy E is in units of V and the ratio VI/V = 0.4 
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with the bulk density of states. The labelling of these states is governed by fig. 3 so 

that first refers to 1, second to 2 or 3, third to 4 or 5, fourth to 6 and fifth to 7. 
Notice that the Shockley state is strongest on the surface orbital and absent on at- 

om 6 in the fourth layer, i.e., the atom labelled 6 in fig. 3. The bulk p bonding/anti- 

bonding delta functions are absent on the surface orbital. The behavior of the delta 
functions is discussed in appendix III. Notice also the sharp surface state feature in 

the center of the valence band - particularly on the back bonds (second and third 
layers). 

5. The 111 surface of the diamond lattice 

A calculation for the 111 surface of the diamond lattice using the Hamiltonian 

(29) proceeds in a very similar way to that for the honeycomb lattice. The labelling 
of the “sp3” states is shown in fig. 7. The bulk bands are given by (see appendix I): 

-Vr f [4$ + v2 + 2v1 Ve(k)] 1’2, VI + V2 (twice), (41) 

where in the conventional cubic axes: 

e2(k)= ltcoskxucoskyatcosk,,acoskzatcoskZacoskxu, (42) 

and the nearest neighbor distance is da/s. The band edges occur when E = VI f V, 
-3VI 5 V, and are shown in fig. 8. The bulk density of states has delta functions at 
V, f V, which are p bonding/antibonding. The self-consistent equation for the Green 

function g can easily be written down and is similar to eq. (32) except that the ma- 
trix is 9 X 9 rather than 7 X 7. Again, a Shockley state appears in the vicinity of 
the band gap. The lower band edge of this state occurs at the r point (the center 
of the surface Brillouin zone) and is a root of the cubic equation 

EV’=(E-V1)(E+2VI)(E+3VI), (43) 

Fig. 7. A part of a 111 surface of the diamond lattice with the states labelled. 

represented by solid circles. 

The atoms are 
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Fig. 8. The bulk energy bands for the diamond lattice are shown by vertical shading as a func- 
tion of VI/V and E measured in units of V. The surface band in the gap region is shown by the 
solid area. 

whereas the upper band edge of the Shockley state occurs at the K point (the cor- 
ner of the hexagonal surface Brillouin zone) and is given by a solution to the equa- 

tion 

&=(E- ~$(Et3~& (44) 

In fig. 9 it can be seen that there are three surface states at each surface k vec- 
tor - and the overall picture is very similar to the honeycomb lattice, especially 
along the line F-K. Note that a constant energy 1.75 eV has been added to the 
Hamiltonian (29) in order to correspond with ref. [8] . The parameters used are ap- 

propriate to bulk Si and/or Ge [8] . The bulk band edges are obtained from eqs. 
(41) and (42) by rotating to new axes: 

z’ = (X ty tz)/ti, y’ = (x - z)/& x’ = (x - 2v + z)/fi, (45) 

and letting k,, take on all values at each k,,, kyt. The bulk band edges are given by: 

e2(k) = +l f [I +4cos2(kx,b) + 4cos(k/z)cos(fik,,,a)] 1’2, (46) 

where b = da/4 and the term under the square root is just the form for the hon- 
eycomb lattice (31) as is not surprising from symmetry considerations. The local 
density of states for various layers are shown in fig. 10 where the labelling is gov- 
erned by fig. 7 so that first refers to 1; second to 2,3, or 4; third to 5,6, or 7; 
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t I I 
r K J r 

Fig. 9. The surface dispersion for the diamond lattice with F’t = 2.5 eV, V = 6.75 eV along sym- 

metry directions in the surface Brillouin zone. This Brillouin zone is a hexagon and K corre- 

sponds to a corner and .I to the center of an edge. The r point is k = 0. The shaded regions are 

the bulk bands projected onto the surface and the solid lines are localized surface states. The 

dashed lines are the bulk p bonding/antibonding states. Note that a constant energy of 1.75 eV 

has been added to the spectrum of the Hamiltonian (29). 

fourth to 8; fifth to 9. The overall behavior is very similar to the honeycomb lat- 
tice with the Shockley state being strongest on the dangling bonds where the p 
bonding/antibonding states are absent. The Shockley states are absent in the fourth 

layer from the surface as in the honeycomb lattice. 
The models discussed in the previous section have the virtue that various quan- 

tities of interest can be obtained algebraically. For example, we obtained expres- 

sions for the band edges of the Shockley states as a function of I’/ VI. This could 
be extended to cases where the surface is reconstructed although of course the al- 
gebra rapidly becomes more complicated and much of the virtue of the present mod- 
el is lost. However, recently Yndurian and Falicov [9] have been able to use the 
transfer matrix technique to discuss simple surface reconstructions that are re- 
stricted to a few layers. In appendix III we discuss another interesting aspect of the 
model, namely, the weight in the delta functions as a function of the distance from 
the surface. 

6. The Bethe lattice 

It is interesting to compare the results of the last two sections with those ob- 
tained for a Bethe lattice, using the same Hamiltonian (29). The Bethe lattice is an 
infinitely branching tree-like structure, the vertices of which we take to be threefold 
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eV ----+ 

Fig. 10. The surface density of states for the diamond cubic lattice for the first five layers in 
from the surface and the bulk. The parameters used are the same as fig. 9. 

or fourfold coordinated, for comparison with the results for the honeycomb and 

diamond cubic lattices respectively. Calculations for the Hamiltonian (29) for these 

buik Bethe lattices are described elsewhere [7,10] . There are infinitely many ways 
of forming a “surface” on a Bethe lattice. One of these was described by Nagle et 

al, [lOI . In this case the “surface” had an infinite number of dangling bonds and 
it was found that the density of states had rather bizzare properties. The density of 
states was shown to be a series of delta functions which did not coalesce to give a 
continuous spectrum in the thermodynamic limit (N * -). 

In the present work we have formed a “dissected” Bethe lattice by cutting a 
single bond in the center of an infinite Bethe lattice. Thus we form only a single 

dangling bond. In so much as the surface properties are determined and dominated 
by a single dangling bond in the previous two sections, this pseudo-lattice should 
prove helpful. The calculation is very easy to do, and some results have already 
been given by Gaspard [ 111 and Goldstein [ 121 . 

For the dissected Bethe lattice we may number basis orbitals starting from the 
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surface, exactly as in previous sections. Again we may relate the Green function g 
associated with the surface orbital to the Green function g’ associated with the bulk 
(i.e., undissected) system by 

g = l/(E - h), (47) 
where 

g’=$[(E-ht V)-1+(&h- Q-11. (48) 

The bulk Green functiong’ may be calculated by a variety of methods [7,10] , for 
a general coordination number z, and is given by 

g’= {(&+(z-2)Vr Et V2-(z-1)V; 

+ [(E*+(z-2)VIE+V2-(z-l)V;)* 

-4EV*(E + (z - 2)5)] “*}(2EV*)-‘. (49) 

The most straightforward way of calculating Green functions associated with other 
orbitals is to proceed iteratively as follows. The Green function for the nth layer 
from the surface can be expressed in terms of two fields h, h, where h represent 
the infinite interior of the Bethe lattice and h, descibes the rest of the lattice. A re- 
currence relation can be written relating h,+l and h,. Starting off with h, = 0, it 
is therefore easy to find any required Green function near to the dangling bond. We 
have refrained from writing down all the algebra as it gets a little messy and the ef- 
fective field method, as applied to Bethelattices, is by now well known [13]. It is 
entirely equivalent to either a continued fraction development of the Green func- 

tion or to the inversion of a matrix as described in previous sections. 
The general nature of the solution is as in the previous sections, with a Shock- 

ley state at E = 0, for Vf/V’ < (z - 1)-l. At this critical value the bottom of the 

conduction band passes through E = 0. (For graphs of the bands for various values 

of Vl / V see Gaspard [ 1 l] .) The fact that the surface state is fixed at E = 0 is not 
obvious from elementary symmetry arguments but an examination of the perturba- 
tion series in (V,/V’) shows that it vanishes so that the state, obviously at E = 0 for 
Vl = 0, must remain there for finite V, . (Note that there is only a single state in 
the Shockley band as we have only a single dnagling bond.) The explicit form of 
the wavefunction for the Shockley state is as follows. If we give the surface orbital 
amplitude 1, then an orbital 2n’steps away has amplitude (-V/Vl)fl and the inter- 
vening ones have zero amplitude. Normalizing to unity, we find that the squared 
amplitude on the surface bond is 

1 -(z- l)V;/V* (SO) 

which goes to zero at the same point VT/V* = (z - 1)-l mentioned above. For 
VT/V” > (z - 1)-l J the amplitude of the Shockley state increases exponentially as 
we go away from the surface and so is not an acceptable solution. 

In figs. 11 and 12 we show densities of states calculated for the first five layers 
by the above methods. In addition to the fall-off of the weighting of the surface 
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FIRST 

Fig. 11. The density of states for the first five. layers in from the dangIing bond for a three co- 
ordinated Bethe lattice and for the bulk. The units are the same as for fig. 6. The horizontal 
axis is energy. 

Fig. 12. Same as fig. 11, but for a four-coordinated Bethe lattice. The energy E of the harizon- 
tal axis is units of V and the ratio VI/V = 0.37. This density of states if for the same ratio V, /V 
as the diamond lattice (fig. 10) although the horizontal scale must be adjusted for a direct com- 
parison. 
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states, explained above, it is worthy of note that the p-state delta functions do not 
have the same weight as in the bulk Bethe lattice. For instance, their weight on the 
first set of basis orbitals from the surface may be extracted analytically from the 

calculation and is 2/9 as opposed to l/4 for the bulk solution for a Bethe lattice in 
the case of fourfold coordination. Although this is not a large effect, it is mathemat- 
ically intriguing, being associated with topological considerations alone (i.e., it does 

not depend on VI/V.). An analysis of the problem is given in appendix III. 
Comparisons of these results for z = 3 and the honeycomb lattice and for z = 4 

with the diamond cubic lattice are interesting. In the Bethe lattice, the amplitude 
of the surface Shockley state vanishes on every other layer. The amplitude of the 
other layers is largest at the surface and decays exponentially to zero in the bulk 
with a decay length - [ln (V, iv>] -l. This kind of general behavior can be seen in 
figs. 6 and 10 for the honeycomb and diamond cubic lattices. The single surface 
state in the Bethe lattice is broadened into a band and the amplitude is no longer 
zero on all the even numbered layers. It is small, however, and indeed is rigorously 
zero on the fourth layer. As this happens for both the honeycomb and diamond 
cubic lattices, we feel there should be scme simple reasoning that would say why, 
but we have not been able to find it. 

There is also a close correspondence in the weights in the delta functions which 
have zero alnplitude on the surface orbital and then increase monotor~ically to the 
bulk value with a decay length that depends only on geometry~topoIo~y and not 
on the ratio VI /V. This is discussed in appendix III. 

7. Conclusions 

We have tried to show how the use of effective potentials can simplify the al- 

gebra of calculating surface states in the tight binding approximation. The method 
is particularly useful in complex geometries where there is no surface reconstruc- 

tion. Surface reconstructions, which is always a factor in real systems may be treated 
as a ~~erturbation at the surface by using equations~~e (27). The more pedestrian ap- 
proach of making ~raditioslal band structure calclllations for finite slabs [2,3] may 
be preferable if the surface reconstruction is extensive. 

We have shown that the weight in the p bonding~antibonding states for “spd” 

Hamiltonians is purely geometrical and independent of the parameters in the Hamil- 
tonian. We have also shown that the behavior of the Shockley states can be largely 
understood in terms of an appropriate Bethe lattice with a single dangling bond. 

We have pointed out that the effective surface potential method is exact for 
simple tight binding Hamihonians. As a result the surface Green function can be 
expressed as a solution of a quadratic equation which depends only on a single pa- 
rameter cy, which depends on the determinants of certain submatrices of the fun- 
damental Hamiltonian (appendix II). The energies of surface states correspond sim- 
piy to the roots of one of these deternliIla~lts as described by eq. (A2.4). By com- 
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parison the effective surface potential method is simpler and easier to apply than 

the Green function method of KS and the transfer matrix method of FY. 
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Appendix I 

In this appendix we discuss a simple way of obtaining the bulk dispersion rela- 
tions for the honeycomb lattice [eqs. (30), (31)] and the diamond lattice [eqs. (41), 
(42)] . The simple form of these relations results because there is a connection be- 
tween the eigenvalues of the two-band Hamiltonian: 

H(2) = _ 

and the one-band Hamiltonian made up of single s states at each site: 

(Al.l) 

H(‘) = C /i)(i). (Al .2) 
(i’f i) 

In both these Hamiltonians we use the convention on the summations that there is 
no double counting and for convenience we have set the matrix element in (Al .2) 
equal to one. Transformations of this kind have been used before by us [7] and 
others [ 141 . 

We will derive the result in general and so we assume that each atom has z nearest 
neighbors with which it bonds. If the amplitude of a wavefunction of Ifc2) with 
energy E at a site labelled i, j (i labels the atom and j the bond) is bii, then we have 
(i, i’ are at each end of the bond j): 

Ebij = -VI & bii, - mi,, 
I’#1 

(Al .3) 

01 

(E - Vl>bii = -VI c bij, - Vbi7, 
I’ 

(Al .4) 

similarly 

(E - VI >biy = -VI C bfjv, - vbii. 
I 

(Al S) 

Eliminating biy: 
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[(E-~~)2-~2]bi~=-~~(E-C;)Cbji,+V1VCbi’i,,, 
.I 

I 
I 

and summing over j we obtain: 

[(W’l)2- V2+zVl(E-I,$)] Cbii= t;Vc biy,,. 
i i’i” 

(Al .6) 

(Al .7) 

If we denote the s like part of wavefunction at site i by: 

Bi= cbii, 
i 

eq. (Al .7) becomes: 

[(E.-v1)(Et[z-1]v1)---V2]Bj=y1~~Bj,, (Al .8) 

where i’ goes over the z neighbors of i. This equation is similar to that for the am- 
plitude Ai of the one-band Hamiltonian at an energy E: 

eAi= FAi., (Al .9) 

and a one-to-one correspondence can be made if we put: 

e= [(E- V1)(D [z-l]V1)-V~]/VIV. (A1.lO) 

i.e 

E= 5(1-z/2)* [V2+(zV,/2)2+ vqf11’2. (Al.1 1) 

Thus for every eigenstate with energy E of the one-band Hamiltonian we generate 
two eigenstates of the two-band Hamiltonian via eq. (Al.1 1). 

This procedure generates all eigenvalues except for those that are entirely p-like 
on each atom. Instead of just two states/atom, we should generate z states/atom; 
the remaining (z - 2) states are equally divided between p bonding/antibonding 
states (i.e., for the linear chain discussed in section 2, there are no such states, for 
the honeycomb i state/atom and for the diamond lattice 1 state/atom, that is, the 
weight in the delta functions becomes relatively more important as z increases). 

A further simplification can be achieved by noting that the Bravais lattices for 
the honeycomb and diamond lattices are the triangular net and the face centered 
cubic lattice, respectively. Both the honeycomb and diamond lattices are bichro- 
matic. Each atom is surrounded by neighbors in the other sublattice - the sublat- 
tices being the appropriate Bravais lattice. Thus, by “squaring” the one-band Hamil- 
tonian (Al .2) - a one-band Hamiltonian for the Bravais lattice is produced (apart 
from a diagonal term z). If the eigenvalues of the one-band Hamiltonian (Al .2) for 
the Bravais lattice are fg , then 
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2 = EB + 2. 

But the EB are simply given by: 

EB = 2> exp (ik.8) 
6 

(A1.12) 

(A1.13) 

for k vectors going over the first Brillouin zone of ihe Bravais lattice. If the nearest 

neighbor distance isd for the Bravais lattice, then (Al .13) becomes: 

linear chain, 

Eg (k) = 2 cos (kd); 

triangular net, 

eB(k) = 2 cos (k@) + 4 cos (k,dj2) cos (v’?kZ d,‘2); 

face centered cubic, 

(A1.14) 

am = 4[cos(kXd/t/2) cos(k,,d@) + cos(kyd/fi)cos(kZd/~) 

+ cos (kZ d/d) cos (kx d/v?)] . 

Our results may be summed up by giving the eigenvalues and their degeneracies: 

V1(l -z/2) + {V2 t(zV1/2)2 t YVI [z +~~(k)] “*j112, [t/2 state/atom] ; 

VI 5 v, [(z - 2)/2 states/atom] . 
(A1.15) 

Appendix II 

The surface Green function depends solely on the parameter cy [see eq. (IZ)] , 
and so it is useful to derive a simple expression for it. We shall use the honeycomb 
lattice as an example for illustration. Eq. (32) can be written as 

1 

-1 

00 
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which can be expressed as a quadratic equation for g. By comparing it with eq. (lo), 
one obtains 

CY = (DC + V2D4)/(2VD5). (A2.3) 

In eqs. (A2.2) and (A2.3),D4, Ds and D6 are the determinants of the 4 X 4,5 X 5 
and 6 X 6 matrices circled by the dash-lines. Eq. (34) can be reproduced after ex- 
panding these determinants. The energies of the surface states can be obtained by 
solving 

Ds =O. 

Similar expressions can be derived for the diamond lattice. 

(A2.4) 

Appendix III 

In this appendix, we consider the question of the weights in the p bonding/anti- 
bonding 6 functions. These states are pure bonding/antibonding and p-like even in 
the presence of a surface. The p-like character means that the sum of the z ampli- 
tudes associated with each atom is zero. The bonding/antibonding character means 

that the amplitudes of the wavefunctions on a bond are the same/opposite. It is 
clear that there must be the same weight in both the bonding and antibonding S 
functions as one can be obtained from the other by changing the sign of half the 

amplitudes. There are never any geometrical constraints preventing this. The weight 
in the p bonding states in the bulk can be determined by the following argument. 
There are z states/atom and to make the character p-like we must impose’1 con- 

straint/atom and to make it bonding, another z/2 constraints/atom. A little taught 
will convince the reader that these constraints are independent. Thus we have z - 1 
-z/2 = z/2 - 1 ways of making p bonding states/atom, i.e., (z - 2)/2z per orbital. 
That is, l/6 of the weight in the honeycomb lattice and l/4 of the weight in the 
diamond cubic lattice is in the p bonding states. 

This argument has to be modified in the presence of a surface when all lattice 
sites are no longer equivalent. There will be extra constraints associated with the 
dangling bonds. Indeed, the only way the state can be pure bonding is if there is 
zero amplitude on the dangling bond itself. This can be seen in figs. 6, 10-12. We 

write the weight Wj on the ith orbital as 

IVi = (z - 2)/2z( 1 - DJ (A3.1) 

where the deficiency Di will go to zero as we go into the bulk. There is effectively 
an extra l/2 constraint/dangling bond so that 

3 = (z - 2)/2z c Di, i.e., z/(z - 2) = cDi, (A3.2) 
i i 

where the summation goes over all orbitals that can be associated with each dangling 
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bond. In the dissected Bethe lattice this is over the entire lattice as there is only a 
single dangling bond. In the honeycomb lattice (see fig. 3) orbitals 2 (which is 
equivalent to 3) gets weight 2, orbital 5 also gets weight 2 and orbitals 6 and 7 each 
get weight 1. It is clear because of the bonding character that the weights of 2 and 
5 will be the same as will the weights of 6 and 7. 

These p bonding states define a subspace of the Hamiltonian (29) that is inde- 
pendent of VI and I? Therefore, the weight in these states follows from purely 
geometrical/topological considerations. This is an unusual situation and may be ex- 

ploited to simplify the calculation of the r>i. Because the p bonding states are de- 
generate, there are many possible ways of describing then - one of the simplest is 
in terms of rings and chains. If a closed ring of bonds or an open ring (chain) of 
bonds is defined, then a p bonding wavefunction has finite amplitude only along 
the chain and the wavefunction looks like . . . + + - - + t - -t t ._. where there is a 

plus and a minus (and also a zero) associated with each atom and the state is clear- 
ly bonding. Of course the 4 can be found directly from the algebra developed in 
this paper but considerable simplification results if we only work within the sub- 
space of the p bonding states and we illustrate this with the honeycomb lattice. In 
this case, we have l/2 p bonding state/atom which just happens to be the same as 
the number of hexagons in the lattice. We therefore have immediately a complete 

set of states within the subspace using the p bonding states + + - - t + - - + t - - 
on each of the hexagons. Those are clearly linearly independent although they are 
not orthogonal. The problem then is to orthogonalize these states and then find 
the weights on the various hexagons and then on the appropriate bond. We define 
an overlap matrix 

(A3.3) 

where the normalized states Ii) are the ring states on the hexagons and the overlap 
integral between adjacent hexagons is -l/6. The sum over i goes over the centers 
of the hexagons which defines the dual lattice of the honeycomb which is triangu- 

lar net. The matrix (A3.3) can be diagonalized using the methods described in this 
paper applied to the triangular net. If the eigenvectors are lE>, then we need to 
know quantities like 

(A3.4) 

The result for the r>i feq. (A3.2)] can be expressed as an integral over the sur- 
face Brillouin zone which can be evaluated an~ytically and is - for the back bonds 
(orbitals 2,3,4,5 in fig. 3),Dj = 2 -3&/n = 0.346 and for the next bonds in (or- 
bitals 6,7 in fig. 3), Di = 10 - 1847r = 0.076 so that the sum rule (A2.2) becomes 

3 = 1 + 4(0.346) + 2(0.076) + . . . . (A3.5) 

It can be seen the Di tend rapidly to zero. The numbers found above agree closely 
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with the numerical calculations previously described where a small imaginary part 
was added to the energy to broaden the 6 functions into lorentzians. 

It is illuminating to also calculate the Di for the dissected Bethe lattice. The sim- 
plest way to obtain these is to consider only the bonding states (both sand p-like 
atomically) and also to treat the single broken bond as a point defect in an other- 
wise in~nite Bethe lattice. It is then possible to show that the deficiencies Di ] eq. 

(A3.1)] in the amplitude of the p bonding state decrease by a factor l/(z -- 1)2 for 
each additional generation on the tree. We know that this state is completely ab- 

sent on the dangling bond itself and so the deficiency here must be 1 and so on 
subsequent layers, it is (z - 1)--2, (z - 1)-4 etc. Thus, for the z = 3 case, we have 

Di = 0.25 for the back bond (compared with 0.346 in the honeycomb) and Di = 
0.0625 on the next layer (compared with 0.076 in the honeycomb). The sum rule 
(A3.2) becomes: 

3 = 1 + 4(0.025) + 8(0.0625) + . . . . (A3.6) 

Notice first that the factors preceding the brackets in (A3.6) increase as we go into 
the bulk for the Bethe lattice whereas they are always 2 or 4 for the llolleyconlb 
lattice. Therefore, because we have the same sum rule in both cases, the Di must 
decay more rapidZy to zero in the Bethe lattice for which the decay length is 

-[In (z - l)] -I layers. We see that this is a very small length so that the weight in 
the p bonding state rapidly attains its bulk value as we move in from the surface. 
Secondly, it happens even more rapidly for larger z. For a general z, the sum rule 

(A3.2) becomes 

+= 1 +2(2-l) -!--- 
1 

(z - 1)2 
t 2(z- 1)2- t 

(2 _ 1)4 ... . 
(A3.7) 

Thus for z = 4, we have Dj = 0.111 for the back bonds and L+ = 0.012 for the next 
layer. We have not made an analytic calculation of these numbers for the diamond 
cubic lattice - however, the numerical calculations give numbers just a little larger 
than for the z = 4 Bethe lattice as we would expect. 
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