
The molecular Hamiltonian
The Extended Hückel method

Let us consider a heuristic, non rigorous, argument. Imagine that the Hamiltonian to be
used in presence of two nuclei or potential boxes A and B which are placed in distant places of
space

HA
  

22

2m  Vr  rA

HB
  

22

2m  Vr  rB

and can be solved independently.

|HA
 |EA. and HB

|  EB|

Now we want to solve the SE in presence of the two potentials VAB  Vr  rA  Vr  rB is
the sum two parts, each one operating in the region of the corresponding atomic orbitals. For
example we could use a function Q|r  rA | that is 1 in the zone around the potential well and
zero out side.

HA
 Q|r  rA | 

22

2m  Vr  rA

HB
 Q|r  rB | 

22

2m  Vr  rA

Hence we could write

HAB
 HA

HB

In that case we could evaluate the matrix elements using these properties which leads to:

H,
AB  |HAB

|  |HA
|  |HB

|

 EA|  |EB

 g
EA  EB

2 S

with g  2 and S  | the overlap matrix element. This expression was developed by
Roald Hoffmann in 1963. Since it extends a previous argument used by Hückel to describe
bonds in carbon compounds it is called the Extended Hückel method. Typically what one does
is to use the meassured molecular distance as inputs. Similarly, for EA and EB the
experimental ionization energies while the overlaps are calculated from the wave function
obtained from an atomic calculation such a Hartree-Fock. Using this prescription, a typical
value that fits better the experimental values is g1.75. The difference from 2 is attributed to
the non-orthogonality of the states.Hence it is a semiempirical method, in contrast with the
ab-initio methods that only use the atomic numbers as inputs.

The most important fact to learn from this formula is to recognize that symmetry (or



geometry) is the origin of different signs in the matrix elements and the source of selection
rules for the bonding interactions.

In order to deal with the non-orthogonality of two atomic basis we write the eigenvalue
equation:

HAB
u,|  u,|  u,|  u,|.

multiplying it alternatively by | and by | one gets two equations for the components u,
and u, of the eigenvector u . Since the states are non-orthogonal we will have coefficients of
the form |  S which we identify as components of the overlap matrix S. This leads
the actual eigenvalue equation:

HAB  Su   0

used in the extended Hückel package.
Non-orthogonal states

It is not quite unusual to we have a basis, where states, although normalized are not
orthogonal to each other. Hence

Si,j  i|j with Si,i  1

the Hamiltonian matrix elements still can be evaluated in this basis

Hi,j  i|Hj
we want to know the eigenenergies and eigenvector. One posible procedure is first to find the
an orthonormal basis, for example with the Gram-Schmidt procedure and then rewrite the the
Hamiltonian in this new basis. Equivalently, one could apply a variational principle using the
trial function:

| 
i

ci|i

  |H|
|


 ij cj

ciHji
 ij cj

ciSji


ck


 j cj

Hjk  i ciHki
 ij cj

ciSji

 ij cj

ciHji  j cj
Sjk  i ciSki

 ij cj
ciSji

2


 j cj

Hjk  i ciHki
 ij cj

ciSji

  j cj

Sjk  i ciSki
 ij cj

ciSji


 j cj

Hjk  Sjk  i ciHki  Ski
 ij cj

ciSji



Roothaan showed that the eigen-energies can be obtained from the roots of the linear equation.

det|H S|  0

which oftn called the Roothaan’s equation in the name of who deduced it a Hartree-Fock
method.

In order to see how it works consider a simple case of a two dimensional spacethe two
states |A and |B which are linearly independent and properly normalized A|A  1 and
B|B  1 but not orthogonal i.e.A|B  S  0. This is expressed in the overlap matrix

S 
1 S
S 1

.

We know the energy matrix elements in this basis are

H 
EA V
V EB

,

the solution can be worked out in Maple to obtain:

1
2 EA  EB  SV   1

2 EA  EB  SV
2  1  S2V2  EAEB

1  S2

and which can be expanded as a series in the overlap:

E  1
2 EA  EB   1

2 EA  EB
2  V2

 S V  EAEB

EAEB24V2
V  OS2

There is an energy increase in both levels proportional to SV. This has an important
consequence that one can not increase the coupling just by decreasing the distance since the
energies will diverge. For s and p orbitals both the overlap and the bonding term diverge as
1/d2 hence one would expect that the enegy would blows up as 1/d4.

In the simple example of two approaching boxes, the same physics can be seen just as an
effect of uncertainty principle as the lowest energy has to blow up as 1/d2

This still seems quite a mess, lets still go to a simpler case

E0  EA  EB
VAB  V with V  0

the secular equation becomes

E0  2  V  S2  0

which can be rewritten as



E0    V  SE0    V  S  0

either the first bracket is zero or the second one is zero. This provides the two eigenvalues:

 
E0  V
1  S

 
E0  V
1  S

Typically, the overlaps tend to be positive we see that the bonding state is even deeper in
energy by effect of the overlap while the antibonding tends to be higher in energy.

In the rest of these notes, we will use the Hamiltonian above within the “tight-binding”
approximation which keeps only nearest neighbors interactions and neglects overlaps. In
quantum chemistry this approximation is called Completly Neglected Differential Overlaps
(CNDO) .

Tight Binding: The Harrison’s parameters
To evaluate a matrix element |H| between orbitals at different atoms, we construct the

vector a from the atom at which | is centered to the atom of |, the right atom.
The z-axis is constructed, in both atoms along the direction of a. The polar and azimuthal

angles being  and  respectively. The angular part of the orbitals are then Yl,m, and
Yl,m ,. The angular factors depending upon  combine to give the factor e imm.
Therefore, this integral will be zero unless m  m and V can be unambiguously denoted with
three subindexes. The indexes used in the matrix elements follow the convention of Slater and
Koster (1954). Then, the matrix elements are labeled ,  and  for m  0, 1 and 2
respectively. For example the matrix element Vsp corresponds to l  0, l   1 and m  0.
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e
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Geometry of matrix elements
The figure above shows the geometry associated to the matrix elements. The positive parts of
the wave function are shaded while negative parts are white. Figure a) shows two s orbitals at a
distance a. Their overlap leads to the matrix element Vss. Part b) shows the overlap
originating Vsp, a matrix element which has different sign than Vss. Part c) schematizes
orbitals interacting with Vpp and d) with a Vpp. Finally, a general orientation of the orbitals
respective to the internuclear vector as depicted in e) would lead to a matrix element of the
form Vsx  s|H|x  Vsp cos  Vsp sin. Where Vsp  0 by symmetry as can be inferred
from the part e2).

A practical estimation of the matrix elements is provided by Harrison and is based in a
paper by Froyen and Harrison (1979). A brief idea of its logic underlying his proposal will be
discussed below. For the moment let us say that it is clear that the interaction terms should be
bigger (in magnitude) for shorter distances and since they account for the energy won by
delocalization, we expect that

Vllm   llm2/md2, for l, l   0,1

where the values of the coefficient are given in the table bellow:



Theoretical Values
Coefficient Simple cubic structure Tetrahedral Adjusted
ss  2

8  1.23 92

64  1.39 1.40

sp 
2

2

4  1  1.90 92

32 1  16
32  3.24 1.84

pp 32

8  3.70 21
64 

2  3.24 3.24

pp 2

8  1.23  32

32  0.93 0.81

In a similar way the homonuclear parameters coupling the d orbitals are evaluated
connecting the d orbitals are

Vllm   llm2rd3/md5, for l, l   2

where the atomic radius rd3 is tabulated

Ti  1.03Å
Fe  0.74Å
Cu  0.69Å

and

dd   45


dd  30


dd   15
2

Finally the interaction that fits the narrow bands associated with the f localizes orbitals can be
seen to scale with distance d as.

Vffx   ffx2rf5/md7

The fact that we want to rescue is that the scaling laws of the homonuclear coupling matrix
elements with the distance depends on the angular momentum.

We are not going to use these parameters in this course but they are given just for
completitude to estimate the values if needed. However, one must remember that the above
parameters only account for the kinetic energy, and for both d and f orbital the Coulomb
interactions play a most relevant role.

ref. W. A Harrison, Elementary Electronic Structure, World Scientific, Singapore (1999)

Polarity and covalency
The simplest Hamiltonian that describe the molecular interaction between two orbitals

belonging to different atoms A and B is:



H 
EA V2

V2 EB

Let us define:

V3  1
2 EB  EA  0

and typical V2  0 .
The polarity parameter is defined by Harrison as

P 
V3

|V2 |2  |V3 |2
.

The bonding state becames

u1g 
1  P

2 and u2g 
1  P

2

Analogously, the ungerade or antibonding amplituds are:

u1u 
1  P

2 and u2g   1  P
2

Let’s call | the bonding state. The probability to find the electron in atom A is:

PA 
|A||2

|A||2  |B||2
 1  P2

2

Similarly, the probability to find the electron in B is

PB 
|B||2

|A||2  |B||2
 1  P2

2

Hence P2 accounts for the charge transfer towards A which gives rise to a dipolar moment.
Accordingly, the coefficient P, defined with equation

P2  V3
2

V3
2  V2

2

is called polarity.
Problem:Take an electric fiel E along the axis of a H2molecule. If the s-states of the two orbitals are

separated by d, this will make an energy diference between the two atomic orbitals of e E d, making the molecule
polar. This will also shift the average occupation of each atomic orbital from the original ui

2  1/2with no field.
Calculate the dipole p  Ethat arrises in first order in the field (two electrons in the bonding state) to obtain the
polarizability is related to the polarity coefficient P. Magnitudes are enough.

A complementary quantity, the covalency coefficient C , is defined through the relation:



C2  1  P2  V2
2

V3
2  V2

2

This justifies the identification calling V2 a covalent energy and to V3 a polar energy.

A simple case of Ligand Field
We are going to consider the H  Li molecule where the electronic structure of each atom

is Li[1s2 2s1] and H[1s1 ]. Obviously, each atom would like to receive an electron to complete
its energy shell, so they share.

Since the energy of the Lithium 1s2 orbital lies well below the 13.5 eV of the Hydrogen
1s1 orbital, the only relevant matrix elements are:

Vs,s  Vss  0
Vpz,s  Vps  0
Vpy,s  Vpx,s  0.

The matrix representation of the Hamiltonian is:

1sH 2sLi 2pzLi 2pxLi 2pyLi

1s E1s Vss Vps . .

2s Vss E2s . . .

2pz Vps . E2p . .

2px . . . E2p .

2py . . . . E2s

where we represent the null elements with a dot instead of a 0 to facilitate the visualization of
the structure taken by the non-zero elements. Notice that the convention of indices indicates
that the H approaches the Li from above. Once a convention is adopted, one should keep it in
all the matrix elements. This is essential to get signs in the interactions providing a consistence
between energies and molecular orbitals. There are two elements of the same order that mix
both atoms. Which one of the Li orbitals will bind the H ? Since Vss  Vps  V the answer is
both! The presence of the nucleus of the Hydrogen breaks the symmetry that produced the
degeneracy of the Li levels. The situation is similar to what happen when a Li atom is placed
in an electric field. Hence, we do a transformation within the Li orbitals

|sp   1
2
|2s  |2pz 

|sp   1
2
|2s  |2pz 

which were discussed in the context of the Stark effect. In the new basis, it is easy to evaluate
the matrix elements



sp |H
Li

|sp   1
2 2s|  2pz |H

Li
|2s  |2pz 

 1
2 E2s  0  E2p  0

The calculation of the other matrix elements follows the same procedure.

sp |H
Li

|sp   1
2 E2s  E2p  E2

sp |H
Li

|sp    1
2 E2p  E2s  V1

sp |H
Li

|sp   1
2 E2s  E2p  E2

For reasons that will become more clear bellow V1 is frequently called a metallic or banding
energy term.

The most important term is

sp |V
HLi

|1s  1
2
2s|  2pz |V

HLi
|1s

 1
2
Vss  Vsp


2 V  V  0
 0

Notice the 2 factor which reinforces the covalent interaction with the hybrid orbital. In
the new basis the Hamiltonian is written as

HHLi 

H1s Li 2sp Li 2sp Li 2px Li 2py

H1s E1s 2 V . . .
Li 2sp 2 V E2 V1 . .

Li 2sp . V1 E2 . .

Li 2px . . . E2p .

Li 2py . . . . E2p

Notice that V1  0 implies that in case of atoms far apart, the atomic orbitals would be
recovered. At atomic distances in this species 2 V  |V1 |. Actually, the value
|V1 |  E2p  E2s  2eV for Li increases regularly in the period up to approximately 27eV for
Ne.

Therefore, in the LiH molecule, the important matrix to obtain the energy levels is



E1s
H V
V E2

Li

with E2
Li  E1s

H  0 and the discussion of the preceding subsection concerning the polarity will
apply.

Hybrid orbitals
We already discused the apperence of the sp hybrid orbitals in the context of the Stark

effect and the HLi molecule. When we are dealing with methane (CH4 we see that the H
would need to be place as much simmetrically as possible around the C. This is the tetrahedral
symmetry.
The sp3

The sp3 family which provides states with tetrahedral symmetry on the space. These were
first defined by Koster and Slater as:

|U1   1
2 |s  |px   |py   |pz  with orientation 111

|U2   1
2 |s  |px   |py   |pz  with orientation 1 1 1 

|U3   1
2 |s  |px   |py   |pz  with orientation 1 1 1 

|U4   1
2 |s  |px   |py   |pz  with orientation 1 1 1

These orbitals can be plotted in the form

U4

U1

U2

U3
U2

x
y

z

Koster and Slater sp3 orbitals
We then evaluate the matrix elements:

U1 |H
atom

|U1   1
4 s|  px |  py |  pz |H

atom
|s  |px   |py   |pz 

 1
4 Es  3Ep  Un |Hatom|Un 

this is called the hybrid energy. While the mixing term will be:



U1 |Hatom|U2   1
4 s|  px |  py |  pz |H

atom
|s  |px   |py   |pz 

 1
4 Es  Ep  V1

 U1 |H
atom

|U3   U1 |H
atom

|U4   U2 |H
atom

|U4 . . .

Simple molecules: CH4 and C2H6

Having analyzed the possible states of an atom, let’s see the structure of themethane
CH4 molecule. We know that it has the structure of a tetrahedral pyramid, with the C-H
bonds forming angles of 109.5 to each other.

The electronic Hamiltonian in the sp3 basis for the C atom is

H 

H11s H21s H31s H41s CU1 CU2 CU3 CU4

H11s
E1s

H . . . V2 . . .

H21s
. E1s

H . . . V2 . .

H31s
. . E1s

H . . . V2 .

H41s
. . . E1s

H . . . V2

CU1
V2 . . . E2

C V1 V1 V1

CU2
. V2 . . V1 E2

C V1 V1

CU3
. . V2 . V1 V1 E2

C V1

CU4
. . . V2 V1 V1 V1 E2

C

Here we see that we might split the problem in 4 identical 2  2 matrices that represent the CH
coupling

E1s
H V2

V2 E2
C

with eigenvalues:



EuCH  1
2 E1s

H  E2
C  1

4 E1s
H  E2

C2  V2
2

EgCH  1
2 E1s

H  E2
C  1

4 E1s
H  E2

C2  V2
2

with eigenstates of the form

bCH 

The problem is almost solved. However we might still want to see what happens with the four
degenerate bonding states that hold the eight electrons shared in the CH4 bond. Coming back
to the intra-atomic mixing term in the carbon, that we neglected before, we would get a
Hamiltonian of the form

HgCH 

EgCH 1
2 V1

1
2 V1

1
2 V1

1
2 V1 EgCH 1

2 V1
1
2 V1

1
2 V1

1
2 V1 EgCH 1

2 V1

1
2 V1

1
2 V1

1
2 V1 EgCH

The interaction will break the four fold degeneracy of the bonding state into a lower s-like
state of energy EgCH  3 1

2 |V1 | and three degenerate p-like states with energy EgCH  1
2 |V1 |.

Since the trace of the matrix is constant, and all the states are filled it will not change the total
electronic energy! Therefore, we see that it is correct to neglect this interaction. A similar
situation will occur with the empty anti-bonding states.

The evaluation of the electronic structure of ethane C2H6 follows a similar procedure.

V2

VCH

Ethane
The C-H bonds are very strong and each one leads to a corresponding 2  2 bonding matrix
that provides the bonding states that will hold 2 electrons. Hence they go out of the calculation.
We are only left with sigma C-C bond. This is easier represented in a graphic energy
representation than in matrix form.

From the Harrison book we extract typical interaction matrix elements which, being
obtained from the crystalline structure apply to homo-atomic bindings:



Metallic energy Covalent Energy
Element V1eV V2eV
C 2.13 6.94
Si 1.76 2.94
Ge 2.01 2.76
Sn 1.64 2.10

When dealing with other carbon compounds on has to resort the the
the sp2

Other hybrid orbitals are the sp2 family in the xy plane:

|T1   1
3

|s  2 |px 

|T2   1
3

|s  1
2 |px   3

2 |py 

|T3   1
3

|s  1
2 |px   3

2 |py 

x

y
T1

T2

T3

Set of sp2

The energies of these orbitals are

T1 |Hatom|T1   1
3 s|  2 px | Hatom |s  2 |px 

 1
3 Es  2Ep

 T2 |Hatom|T2   T3 |Hatom|T3 .

Since these hybrid orbitals are not eigenfunctions of the atom they will have matrix elements

T1 |Hatom|T23   1
3 s|  2 px | Hatom |s  1

2 |px   3
2 |py 

 1
3 Es  Ep  V1

 T2 |Hatom|T13   T3 |Hatom|T12 .



Molecules with double bonds: C2H4 and C4H6
 bonds in ethylene C2H4.

Vpp

Ethylene
We remember that, when the atoms are approaching along the x direction, the interaction

term between two pz orbitals is called Vpp

HCC 
E2pz Vpp
Vpp E2pz

,

from now on we call them simply V. This leads to the energy levels shown in the figure
(Falta).

 Vppπ Vppπ 

Vppπ 

We now consider the butadiene molecule C4H6, whose structure is shown in the figure

E2pz V . .
V E2pz V .
. V E2pz V
. . V E2pz

u1

u2

u3

u4

 

u1

u2

u3

u4

Clearly, there is no reason to expect that the probability amplitudes at site 1 and 4 be different.
The same is for sites 2 and 3. With this assumption



u4  u1

u3  u2
or

u4  u1

u3  u2

from the node counting or oscillation theorem we know that the first condition will provide the
ground state and the second state as only 0 or 1 nodes would be allowed from such selection.
The second only affords states with two or three nodes which would become the 3rd and 4th
energy states.

Let us try the first two equations:

Epu1  Vu2  u1

 Vu1  Epu2  Vu2  u2

the third repeats the second one and the fourth equation the first. Hence the matrix to be solved
is

det
  Ep V
V   V  Ep

 0

which leads to the solution.
Problem. finish this calculation.

 

 

Vppπ 

Polyacetylene
From the above calculations we see the structure that would result in posing the problem of

a general polyene molecule



H 

1 2 3 4  N1 N

1 Ep V . .  . .

2 V Ep V .  . .

3 . V Ep V  . .

4 . . V Ep  . .

       

N1 . . . .  Ep V

N . . . .  V Ep

Before proceeding with the solution we are going to consider an apparently quite different
problem: our old friend the electron in a box.

other hibrids:
The d Electron Orbital and the Crystal field

Consider a transition-metal ion (M) in a crystal having perovskite structure. It is
surrounded by six oxygen ions, O2, which give rise to a crystal-field potential (the total
Coulomb potential of electrons from each lattice site) that partly lifts the degeneracy of the d
electron levels. Wavefunctions pointing toward O2 ions (dx2y2 and d3z2r2 , called eg orbitals)
have higher energy than those pointing in between them (dxy, dyz, and dzx, called t2g orbitals).
One can imagine the degenerate orbital states as a new degree of freedom that behaves in a
solid like the spin degree of freedom. In analogy to the spin ordering, for instance, an exchange
interaction between the orbitals (pseudo-spins) on neighboring transition-metal sites orders the
orbitals on lattice sites at low temperatures. Recently, the spin-orbital analogy has sparked the
use of an orbital as a control parameter of charge motion (termed orbitronics).

Binding Energies
We have spoken about the states. Now, we must discuss about their occupation. In what

follows, we discuss the energetic of the  bonds. This follows the arguments given by R.



Feynman vol III.

Macromolecules.
The local view

Since we know how to solve big matrices, we might come back and solve a polyethylene
molecule.We keep only the  orbitals written in the sp3 basis.

H 


n2sp n1sp n1sp nsp nsp n1sp n1sp 

n2sp E2 V2 . . . . .

n1sp V2 E2 V1 . . . .

n1sp . V1 E2 V2 . . .

nsp . . V2 E2 V1 . .

nsp . . . V1 E2 V2 .

n1sp . . . . V2 E2 V1

n1sp . . . . . V1 E2

 

Remember that we denote with V1 the intra-atomic couplings while V2 is the inter-atomic ones.
We transform into the bonding base

 An1 Bn1 An Bn An1 Bn1 An2 

An1
E2  V2 . 1

2 V1
1
2 V1 . . .

Bn1
. E2  V2

1
2 V1

1
2 V1 . . .

An
1
2 V1

1
2 V1 E2  V2 . 1

2 V1
1
2 V1 .

Bn
1
2 V1

1
2 V1 . E2  V2

1
2 V1

1
2 V1 .

An1
. . 1

2 V1
1
2 V1 E2  V2 . .

Bn1
. . 1

2 V1
1
2 V1 . E2  V2 V1

An2
. . . . . V1

 



 An1 An An1 An2  Bn1 Bn Bn1

An1 E2  V2
1
2 V1 . .  1

2 V1. . .

An
1
2 V1 E2  V2

1
2 V1 .  . 1

2 V1. .

An1 . 1
2 V1 E2  V2

1
2 V1  . . 1

2 V1

An2 . . 1
2 V1 E2  V2  . . .

        

Bn1
1
2 V1 . .   E2  V2

1
2 V1 .

Bn . 1
2 V1 .   1

2 V1 E2  V2
1
2 V1

Bn1 . . 1
2 V1   . 1

2 V1 E2  V2

Clearly, this gives a band of width 2|V1 | around the bonding energy E2  V2 and a band of
width 2|V1 | around the anti-bonding energy E2  V2. This suggests that we can look at the
more complex situation of networks in the space.

Frontier orbitals theory for chemical
reactions

The basic idea of the Theory of frontier orbitals that led to the 1981 Nobel prize of Roald
Hoffman and Kenichi Fukui, can be rationalized from a simple energy diagram of the reactants
A and B to form the product AB in a single (concerted) step. The analysis is simplified using
the names introduced by Fukui :

HOMO: Highest occupied molecular orbital.
LUMO: Lowest unoccupied molecular orbital.

As two molecules collide, two categories of processes can be identified.
1) Electrostatic interactions that cause that the occupied orbitals repel each other through

an electrostatic mechanism. Similarly, regions with positive charge in one molecule attracts
regions of negative charge on the other.

2) The quantum mechanics would act in two competing ways represented in the diagram.



HOMO

LUMO

HOMO

LUMO

A BA(-)B(+)

electron flow

Frontier Orbitals for A  B  AB
On first order it appears a repulsion between the occupied states. This is the effect of the
overlap in the Schrödinger equation. The proximity of the nucleii tries to force the electrons to
occupy the same physical space. This is not allowed by the exclusion principle and will have a
weak antibonding effect. On the opposite, kinetic terms favor the delocalization of the
electrons towards space regions previously unaccessible. This decreases the energy by
increasing the localization uncertainty.

The lessons we learn from this diagram are:
 When a complex activated complex is formed, there must be non-vanishing matrix

element (a net positive overlap in the extended Hückel theory)).
 The electrons flow from the HOMO of one specie towards the LUMO of the other and

viceverse. For hetero-molecular reactions, this could lead to a net charge transfer.
 Since we know the order of magnitude of the overlap matrix elements is a few eV, for

these to be effective the energies must be close ( 6eV). The closest the energies, the
fastest the reaction.

 The flow of electrons from the HOMO of the nucleophile specie to the LUMO of the
electrophile molecule also must lead to the breaking of the bonds and the formation of the
products. If this is not the case one could not be certain of the occurrence of the reaction.

 HOMO-HOMO and LUMO-LUMO couplings do not contribute to the binding energy. On
the contrary, they contribute to the molecular repulsion.

Now we are going to see how this works is some specific examples.
Example 1: H2  I2  2HI
Example 2:

The discussed examples allow us to understand the empirical cycloaddition rules:
If a molecule with m electrons  is added to a molecule with n electrons of the  type, the

reaction:
 Is thermally allowed if m  n  4q  2
 Is photochemically activated if m  n  4q

Example. The reaction 2 ethylene  cyclobutene which is naturally hindered can be



photochemically activated through diradicals.
Example. the reactions of the Diels and Alder (Nobel 1950) type are those of the form

m  n  4q  2 type are thermally concerted.
The quantitative evaluation of the energy associated to a reaction can be done with the

Klopman Theorem. (Klopman, J. Am. Chem. Soc. 90, 223 (1968). also a paper by Salem). It
states that the binding energy can be obtained just from a perturbation theory evaluation:

E   QAQBRAB


a,b
fa  fbVabSab

 
k

occupied


l

unocc.

 
l

occupied


k

occupied

2
ab uakublVab

2

Ek  El

 solv.

The first term is a simple electrostatic term where the QA and QB are the total charges of the
species, and RAB is their distance. This term is ussualy very similar for any direction of attack.
It is obviously important to describe polar molecules. The second and third terms have
quantum origin. The second is the repulsion among the closed shell states. It is evaluated in
first order perturbation theory. Here

fa  
k

occupied

|uak |2

Since uak is the amplitude of the atomic orbital a in the occupied molecular orbital k with
energy Ek, |uak |2 is the electron occupation of atomic orbital a. The individual contribution can
be quite directional, but the overall effect of this term could be quite unpredictable.

Finally, the last term is the second order quantum contribution to the bond. It describes the
transfer from the occupied into the unoccupied states. Clearly the HOMO and the LUMO
provide the most important contribution among them. This is generally the most important
contribution to explain differential reactivity among different pathaways or processes.

Further analysis of the reaction would require the unwritten term dubbed solvation, which
could include: the entropy of activation. Also important in the analysis would be the strain of
the network, and the steric factors.
Some references:
After this notes were prepared I noticed that

 Molecular Quantum Mechanics
P. W. Atkins and R. S. Friedman (Oxford U. P. 3rd Ed.),
in their sections 11.11-11.16 extends these lectures. It is recomended as complementary

reading.


