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drogen atom is described by a wave
pattern, The electron cannot be pine
pointed in space; it is a cdloudlike smear
hovering near the proton. Assoclated
with each allowed energy level is a sta
tionary state, which is a wave pattern
that does not change with Ume. A sta-
tonary state corresponds guile closcly
to the vibrational pattern of a mem-
brane that is stretched over a rigid
frame, such as a drum.

The stationary states of a chaotiv
syslem have swrprisingly Interesting

ENERGY SPECTRIM, ur distribution of
energy levels, differs markedly between
chaotic and monchaotic quantum sys-
tems. F'or a nonchaotic system, such as
a molecular hydrogen ion (H.*), the
prohahility of finding two energy levels
close Lo each other is quite high. In the
case of a chaotic system such as a Ryd-
berg atom in a strong magnetic fleld, the
probability is low. The chaotic spectrum
closely matches the Lypical nuclear spec-
trum derived many years ago by Eu-
gene P, Wigner,

slruclure, as demonstrated in the early
1498(s by Eric Heller of the University
of Washinglon. He and his students
calculated a series of stationary states
for a two-dimensional cavity in the
shape of a stadium. The corresponding
problem in classical mechanics was
known to be chaotic, for a typical tra-
jectory quickly covers most of the
available ground quite evenly. Such be-
havior suggests that the stationary
slales might also look random, as il
they had been designed without rhyme

RELATIVE ABSORPTION

CORRAELATION

ABSORPTION OF LIGHT by a hydrogen atom in a strong

A7 S
ERIOD)

ic field appears 1o

magnetic
vary randomly as a function of energy (top), but when the data are analyzed ac-
cording to the mathematival procedure called Fourler analysis, a distinct pattern
emerges (bettom). Each peak in the bottom panel has assoclated with it a specific
classical periodic orbit (red figares next to peaks).
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or reason. In contrast, Heller discov-
ered that most stationary states are con-
centraled around narrow channels that
form simple shapes inside the stadium,
and he called these channels “scars”
Isee Musiration on opposite page]. Simi-

lar strugture can alsd Be found in the
statlonaty states of a i atom In
a strong magnelic field (8¢

on page 791. The smoothiiess of the
quantum wave forms is preserved from
point to polnt, but when one steps back
to view the whole picture, the linger-
print of chaos emerges.

It is possible 10 cormect the charlic
signature of the energy spectrum to or-
dinary classical mechanics, A clue to
the prescription is provided in Fin-
stein's 1917 paper. He examined the
phase space of & regular system from
box R and desceribed it geometrically as
filled with surfaces in the shape of a
donut; the motion of the system corre-
sponds to the rajectory of a point over
the surface of a particular donut. The
trajectory winds its way around the
surface of the donut in a regular man-
ner, but it does not necessarily close on
ituell,

In Linslein's picture, the application
of Bohr's correspondence principle to
find the energy levels of the analogous
quantum mechanical systemm is simple.
The only trajectories that can occur in
nature are those in which the coss
section of the donut encloses an area
equal to an integral multiple of Planck's
constant, k(2 times the fundamental
quantum of angular momentum, having
the units of momentum multiplied by
length), It toms cut that the intepral
mulliple is precisely the number that
specifies 1he corresponding energy level
in the guantum system.

Unfortunately, as Einstein clearly saw,
his method cannol be applied if the
system is chaotic, for the rajectory
does not lie on a donut, and there is no
natural area to enclose an inlegral mul
tiple of Planck's constant. & new ap-
proach must be sought to explain the
distribution of quantum mechanical
energy levels in terms of the chaotic or-
hits af classical mechanics.

Which features of the trajectory of
classical mechanics help us to under-
stand quantum chaos? Hill's discussion
of the moon's irregular orbit because
of the presence of the sun provides a
clue. His work represented the first in-
stance where a particular periodic orbit
is found to be at the bottom of a diffi
cult mechanical problem. (A periodic
orbil is like a dosed track on which the
syslem is made to run; there are many
of them, although they are 1solated and
unstable.) Inspiration can also be drawn
from Poincaré, who emphasized the



PARTICLE IN A STADIUM-SHAPED BOX has chaotic stationary than one might expect. Most of the states are concentrated
states with associated wave patterns that look less random around narrow channels that form simple shapes, called scars.



general imporlance of periodic orbits,
In the beginning of his three-volume
work, The New Methods of Calestial Me-
chanics, which appeared in 1892, he ex-
presses the belief that periodic orbits
“offer the only opening through which
we might penetrate into the fortress
that has the reputation of being im-
pregnable.” Phase space for a chaotic
system can be organized, at leasl par-
tially, around periodic orbils, even
though they are sometimes quite diffi-
cult to find.

way to extract information about

the quantum mechanical spectrum
from a completé enumeration of the
classical perlodic orbits. The mathe-
matics of the approach is too difficult
to delve into here, but the main result
of the method is a relatively simple ex-
pression called a trace formula. The ap-
proach has now been used by & num-
ber of investigators, including Michagl
V. Berry of the University of Bristol,
who has used the formmula to derive the
statistical properties of the spectrum,

I have applied the trace formuila to
compute the lowest two dozen energy
levels for an electron in a semiconduc-
tor lattce, near one of the carefully
controlled impurites. (The semicon-
ductor, of course, is the basis of the
marvelous devices on which modern
life depends; because of ils impurities,
the electrical conductivity of the mate-
rial is halfway between that of an insu-
lator, such as plastic, and that of a con-
ductor, such as copper.) The trajectory
of the electron can be uniquely charac-
terized by a string of symbols, which
has a stralghtforward interpretation.
The swring is produced by defining an
axis through the semiconductor and
simply noting when the trajectory cross-

In 19710} | discovered a very general

es the axis. A crossing to the "positive”
slde of the axis gets the symbol +, and
a crossing to the “negative” side pels
the symbol -,

A majectory then looks exactly like
the record of a coin tass. BEven if the
past is known in all detail—even if all
the ¢rossings have heen recorded—the
Tuture is still wide open. The sequence
of crossings can be chosen arbitrarily,
Moy, a periodic orbit consists of a bi-
nary sequence that repeats itself: the
simplest such sequence is (+ -), the
next is {(+ + -), and so on. (Two cross-
ings in a row having the same sign indi-
cate that the electron has been trapped
temporarily.) All perindic orbits are
thereby enumeraled, and it is possible
to calculale an approximate spectrum
with the help of the trace formula. In
ather words, the quantam mechanical
energy levels are obtalned in an ap-
procimation that relies on quantities
from classical mechanics only.

The classical periodic orbits and the
quantum  mechanical spectrum are
closely hound together through the
mathematical process called Fourier
analysis [see “The Fourier Transform,”
by Ronald M. Bracewell;  SCIENTIEL
AMERICAN, June |9849]. The hidden reg-
ularities in one set, and the frequency
wilh which they show up, are exactly
given by the other set. This idea was
used by John B. Delos of the College of
William and Mary and Dieter Wintgen
of the Max Planck Institute for Nuclear
Physics in Heidelberg to mterpret the
spectiuin of the hydrogen atom in a
strong magnetic ficld.

Experimental work on such spectra
has been done by Karl H. Welge and
his colleagues ab the University of
Bielefeld, who have excited hydrogen
aloans nearly to the point of ionization,
where the electron tears itself free of

the proton, ‘The energies at which the
aloms absorh radiation appear to be
fuite random [see upper part of bottorn
illustration on opposite page], but a
Fourier analysis converts the jumble of
peaks into a set of well-separated peaks
|see lower part of bottom illustration on
apposite pagel. The importanl fealure
here is that cach of the well-separated
peaks corresponds precisely to one of
several standard classical periodic or-
bits. Poincaré's insistence on the impor-
tance of periodic orbits now takes on a
new meaning. Mot only does the classi-
cal organizaton of phase space depend
critically on the classical periodic orbits,
but so too does the understanding of a
chaotic quantum spectrum.

o far I have tallked omnly about

quantum systems in which an

clectron is trapped o spatially
confined. Chaotic ellects are also pres-
ent in-atomic syslems where an elec-
tron can roam freely, as it does when it
is srattered from the atoms in a male-
cule. Here energy is no longer quan-
tized, and the electron can take on any
value, but the etfectiveness of the scat-
tering depends on the energy.

Chaos shows up in quantum scatter-
ing as variations in the amount of Hme
the electron is temporarily caught in-
side the molecule during the scallering
process. For simplicity, the problem
can be examined in bwo dimensions. To
the electron, a molecule consisting of
four aloms looks like a small maze,
When the electron approaches one of
the atoms, it has two cholees: it can
turn left or right. Each possible tra-
jectory of the electron through the
molecule can be recorded as a series of
left and right turns areund the atoms,
until the particle finally emerges. All of
the trajectorics are unstable: even a
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RELATIVE PHASE SHIFT

I Fk

INCREASING MOMENTUM ———>

TRAJECTORY OF AN ELECTRON through a molecule during
scattering can be recorded as a series of left and right turns
around the atoms making up the molecule (left). Chaotic
variation (above) characterizes the time it takes for a scat-
tered electron of known momentum to reach a fixed monitor-
ing station. Arrival time varies as a function of the electron’s
momentum. The variation is smooth when changes in the
momentum are small but exhibits a complex chaotic pattern
when the changes are large. The quantity shown on the verti-
cal axis, the phase shift, is a measure of the time delay.



minute change in the energy or the
initial direction of the approach will
cause a large change In the direction in
which the electron eventually leaves
the molecule.

The chaos in the scallering process
comes [rom the fact that the mamber
of possible rajectories increases rapid-
ly with path length. Only an interpreta-
tlon from the guantum mechanical
point of view gives reasonable resulls;
a purely classical caloulation - yields
nonsensical results. In quantom me-
chanics, each classical trajectory of the
clectron is wsed 1o define a little
wavelet that winds ity way through the
molecule. The quantum mechanical re-
sult follows from simply adding up all
such wavelets.

Recently I have done a calculation of
the scallering process for a special case
in which the sum of the waveleis is ex-
act, An eleciron of lknown momenlum
hits a molecule and emerges with the
same momentum. The arrival dme for
the elecron to reach a fived monitor-
ing station varies as a function of the
momentum, and the way in which it
varies is what is 8o [ascinating about
this problem. The arrival time fluctu-
ales smoothly over small changes in
the momentum, but over large changes
a chaotic imprint emerges, which never
settles down 1o any simple paliern [see
right part of Mlastration abovel.

particularly tantalizing aspect of

the chaolic scattering process is

that it may connect the myster-

ies of quantum chaos with the myster-
ies of number theory. The calculaton

of the tme delay leads straight Into
what is probably the most enigmatic
object in mathematics, Riemann's zeta
funclion. Actually, It was first employed
by Leonhard Euler in the middle of the
1Bth century to show the existence of
an infinite number of prime numbers
{integers thal cannot be divided by any
smaller integer other than one). Aboul
a century later Bernhard Riemann, one
of the foonders of modern mathemat-
ics, employed the [unction to delve
into the distribution of the primes. In
his only paper on the subject, he called
the function by the Greek letter zeta,

The zcta function {8 a function of
two variables, x and y (which exist in the
complex plane). To understand the dis-
tribution of prime numbers, Riemann
needed v know when the zeta func-
tlon has the value of zero. Withoul giv-
ing a valid argument, he stated thal
it is zero only when a is set equal to
14, Vast calculations have shown thal
he was right withoul excepton for the
first bilion zeros, bul no mathemati-
cian has come even close to providing
# proof. If Riemann's conjecture is cor-
rect, all kinds of Interesting propertes
of prime numbers could he proved,

The values of y for which the zeta
tunction is zero form a set of numbers
that is much like the spectrum of ener-
gles of an atom. Just as one can study
the distribution of ¢nergy levels in the
spectrum, so can onc study the distri-
bution of zeros [or the zeta fanction.
Here the prime numbers play the same
role as the classical closed orbits of the
hydrogen atom in a magnetic field: the
primes indicate some of the hidden
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vorrelations among the zeros of the
Zeta lunchon,

in the scattering problem the zeros
of the zela function give the values of
the momenlum where the time delay
changes sirongly. The chaos of the Rie-
mann zeta function is particularly ap-
parent in a theorem that has only re-
cently been proved: the zeta function
fits locally any smooth function. The
theorem suggests thal the function may
describe all the chaotic behavior a quan-
tum system can exhibil. If the mathe-
malies of quantum mechanics could be
handled more skilifully, many cxanm-
ples of locally smooth, yel globally.
chaotic, phenomena might be found.
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