Quantum Chaos

Does chaos lurk in the smooth, wavelike quantum world?
Recent work shows that the answer is yes—symptoms of chaos enter
even into the wave patterns associated with atomic energy levels

n 1917 Albert Einstein wrote apa-

per that was completely ignored
Ifnr-iﬂyms.lnlt he raised a ques-
tion that physicists have only recently
begun asking themselves: What would
classical chaos, which lurks everywhere
in our world, do to quantum mechan-
ics, the theory describing the atomic
and subatomic worlds? The effects of
classical chaos, of course, have long
been observed—Kepler knew about the
irregular motion of the moon around
the earth, and Newton complained bit-
terly about the phenomenon. At the end
of the 19th century, the American as-
tronomer George -‘William Hill demon-
strated that the irregularity is the result
entirely of the gravitational 'pull of the
sun. Shortly therealter, the great French
mathematician-astronomer-physicist
Henri Poincaré surmised that the moon's
motion is only a mild case of a congen-
ilalm 3 ruhud. }

In the long run, Poincaré realized, most
dynamic systems show no discernible
regularity or repetitive pattern. The be-
havior of even a simple system can de-
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pend so sensitively on its initial condi-
tions that the linal outcome is uncertain
[see “The Amateur Scientist,” page 144].
At about the time of Poincaré's semi-
nal work on classical chaos, Max Planck
started another revolution, which would
lead to the modern theory of quantum
mechanics. The simple systems that
Newton had studied were i
again, but this time on the atomic scale.
The gquantum analogue of the humble
pendulum is the laser; the flying can-
nonballs of the atomic world consist of
beams of protons or electrons, and the
rotating wheel 1s the spinning electron
(the basis of magnetic tapes). Even the
solar system itself is mirrored in each
of the atoms found in the
table of the elements.
Perhaps the single most outstanding
feature of the quantum world is its
smooth and wavelike nature. This fea-
ture leads to the queston of how chaos
makes itself felt when moving from the
classical world to the quantum world,
How can the extremely irregular char-
acter of dassical chaos be reconciled
with the smooth and wavelike nature
of phenomena on the atomic scale?
Does chaos exist in the quantum world?
Preliminary work seems to show that
it does. Chaos is found in the distribu-
tion of energy levels of certain atomic
syslems; it even appears to sneak into
the wave patterns associated with those
levels. Chaos is also found when elec-
trons scatter from small molecules. T
mst emphasize, however, that the term
“quantum chaos” serves more to de-
scribe a conundrum than 1o define a
well-posed problem.

onsidering the following inter-

pretation of the bigger picture

may be helpful in coming to

grips with quantum chaos. All our the-

oretical discussions of mechanics can

be somewhat artificially divided into

three compartments [see illustration on

page 80]—although nature recognizes
none of these divisions,

Elementary classical mechanics falls
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periodic, |

in the first compartment. This box con-
tains all the nice, clean systems exhibit-
ing simple and regular behavior, and so
I shall call it R, for regular. Also con-
tained in R is an elaborate mathemati-
cal tool called perturbation theory,
which is used to calculate the effects of
small interactions and extraneous dis-
turbances, such as the influence of the
sun on the moon'’s motion around the
earth, With the help of perturbation
theory, a large part of physics is under-
stood nowadays as making relatively
mild modifications of regular systems.
Reality, though, is much more compli-
cated; chaotic systems lie outside the

ter the pioneering work of Planck, Ein-
stein and Niels Bohr, quanium mechan-
ics was given its definitive form in four
short years, starting in 1924. The semi-
nal work of Louls de Broglie, Werner
Heisenberg, Erwin Schridinger, Max
Born, Wolfgang Pauli and Paunl Dirac
has stood the test of the laboratory
without the slightest lapse. Miraculous-
ly, it provides physics with a mathe-
matical framework that, according to
Dirac, has yielded a deep understand-
ing of “most of physics and all of chem-
istry,” Nevertheless, even though most



physicists and chemists have learned
how to solve special problems in quan-
tum mechanics; they have yet to come
to terms with the incredible subtletes
of the field. These subtleties are quite
separate from the difficult, conceptual
Issues having to do with the interpreta-
tion of quantum mechanics.

The three b R (classic, simple sys-
tems), P (clas ic systems) and O

(quannim systems) are linked by several
connections. The connection berween
R and () is known as Bohr's correspon-

dence principle, The correspondence
principle claims, quite reasonably, that
classical mechanics must be contained
in quantum mechanics in the limit where
objects become much larger than the
size of atoms. The main connection be-
tween R and P is the Kolmogorov-
Amold-Moser (KAM) theorem: The KAM
theorem provides a powerful tool for
caleulating how much of the structure
of a regular system survives when a
small perturbation is introduced, and
the theorem can thus identify perturba-

tions that will cause a regular system
to underga chaptic behavior.

Ouantum chaos is concerned with es-
tablishing the relation between boxes P
(chaotic systems) and O (quantum sys-
tems). In establishing this relation, it
is useful to introduce a concept called
phase space. Quite amazingly, this con-
cept, which is now so widely exploited
by experts in the field of dynamic sys-
tems, dates back to Newton.

The notion of phase space can be
found in Newton's Mathematical Princi-

bottom two are chaotic. At the bottom left, the state lies most-
ly along a periodic orbit; at the bottom right, it does not and
is difficult to interpret, except for the four mirror symmetries
with respect to the vertical, horizontal and two diagonal lines.

STATIONARY STATES, or wave patterns, associated with the
energy levels of a Rydberg atom (a highly excited hydrogen
atom) in a strong magnetic field can exhibit chaotic qualities.
The states shown in the top two images seem regular; the
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MECHANICS is traditionally (and artificially) divided into the three compartments
depicted here, which are linked together by several connections. Quanium chaos is
concerned with establishing the relation between boxes I and O,

ples of Natural Philosophy, published in
1687, In the second definition of the
lirst chapter, entitled “Definitions,”
Newlon states (as (ranslated from the
original Latin in 1729): “The gquantity of
motion is the measure ol the same,
arising from the velocity and guantity
of matter conjointly.” In modern En-
glish, this means that for every object
there is a gquantity, called momentam,
which is the product of the mass and
velocity of the object,

Mewton gives his laws of motion in
the second chapter, entitled “Axioms,
or Laws of Motion,”" The second law
says that the change of motion is pro-
portional to the motive force im-
pressed. Newton relates the force to
the change ol momentum (not to the
acceleration, as most textbooks do).

Momentum is actually one of two
quantities that, taken together, yield
the complete information about a dy-
namic system at any instant. The other
quantity is simply position, which de-
termines the strength and direction of
the lorce. Newlon's insight into the
dual nature of momentum and posi-
tion was put on firmer ground some
150 vears later by two mathematicians,
William Rowan Hamilton and Karl Gus-
tav Jacob Jacobi. The pairing of mo-
menturm and position is no longer
viewed in the zood old Euclidean space
of three dimensions; instead it is
viewed in phase space, which has six
dimensions, three dimensions for posi-
tion and three for momentum.

The introduction of phase space was
a wonderful step from a mathematical
point of view, but it represents a scri-
ous setback from the standpoint of ho-
man intuition. Who can visualize six di-
mensions? In some cases, Tortunately,
the phase space can be reduced o
three or, even better, two dimensions.

Such a reduction is possible in exam-

&

ining the behavior of a hyvdrogen atom
in a strong magnelic feld. The hydro-
gen atom has long been a highly desir-
able system hecause of its simplicity: a
lone electron moves around a lone pro-
tor, And vet the classical motion of the
electron becomes chaotic when the
magnetic lield is turned on. How can
we claim o understand physics if we
cannot explain this basic problem?

nder normal conditions, the elec-

mron of a hydrogen atom s

tightly bound to the proton. The
behavior of the atom is governed by
guanium rmechanics. The atom is not
free to take on any arbilrary energy; it
can take on only discrete, or quantized,
cnergies. At low energies, the allowed
values are spread relatively far apart.
As the energy of the atom is increased,
the atom grows bigger, because the
electron moves farther from the pro-
ton, and the allowed energies get closer
together. At high enough energies (but
not too high, or the atom will be
stripped of its electron!), the allowed
energies get vory close together into
whal is effectively a continuum, and it
now becomes fair to apply the rales of
classical mechanics.

Such a highly excited atom is called a
Eydberg atom [see “Highly Exciled
Atoms,” by Daniel Kleppner, Michael G.
Littman and Myron L. Zimmerman; SCT-
ENTIFIC AMERICAN, May 1981]. Rvdberg
atoms inhabit the middle ground he-
tween the gquantum and the classical
worlds, and they are therefore ideal
candidates for exploring Bohr's corre-
spondence principle, which connects
boxes O (quantum phenomena) and R
iclassic phenomena). If a Rydberg atom
could be made to exhibit chaotic Te-
havior in the classical sense, it might
provide a clue as to the nature of guan-
tum chaos and thereby shed light on
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the middle ground between boxes O
and P (chaotic phenomena).

A Rydberg atom exhibits chaotic
hehavior in a strong magnetic feld, bat
to see this behavior we must reduce the
dimension of the phase space. The [irst
step is to note that the applied magnet-
ic ficld defines an axis of symmetry
through the atom. The motion of the
electron takes place effectively in a
two-dimensional plane, and the motion
around the axis can be separated out;
only the distances along the axis and
from the axis matter. The symmelry of
motion reduces the dimension of the
phase space from six to four.

Additional help comes from the fact
thal no outside force does any work on
the eleclron. As a consequence, the to-
tal energy does not change with time,
By focusing attention on a particular
value of the energy, one can take a
three-dimensional slice—called an en-
ergy shell—out of the four-dimensional
phase space. The energy shell allows
one Lo walch the twists and turns of
the eleciron, and one can actually see
something resembling a tangled wire
sculpture. The resulting piclure can be
simplified even further through a sim-
ple idea that ocourred to Poincaré. He
suggested taking a fixed two-dimen-
sional plane (called a Poincaré section,
ar a surface of section) through the en-
ergy shell and walching the points at
which the trajectory intersects the sur-
face. The Poincaré section reduces the
tangled wire sculpture to a sequence of
points in an ordinary plane,

A Poincaré section for a highly excit-
ed hydrogen atom in a sIrong magnetic
field is shown on the opposite page.
The regions of the phase space where
the points are badly scattered indicate
chaotic behavior, Such scattering is a
clear symptom of classical chaos, and
it allows one (o separate systems into
either box I' or box R,

hat does the Rydbersg atom
reveal about the relation be-
twieen boxes Poand 37 | have

mentioned that one of the trademarks
ol a quantum mechanical system is its
quantized energy levels, and in fact the
energy levels are Lhe [irst place to look
for gquantum chaos. Chaos does not
make itself felt at any particular energy
level, however; rather its presence is
seen in the spectrum, or distribution,
of the levels. Perhaps somewhat para-
doxically, in a nonchaotic quantum sys-
term the energy levels are distribut-
ed randomly and withoutl correlation,
whereas the energy levels of a chaotic
cuantum system exhibit strong correla-
tions [see rop illustration on page 82
The levels of the regular system are of-



ten close to one another, because a reg-
tem is composed of ‘smaller
ystems that are completely decou-
pled. The energy levels of the chaotic
system, however, almost seem 1o he
aware of one another and vy to keep a
safe distance, A chaotic system cannot
be decomposed; the motion along one
coordinate axis is always coupled to
what happens along the other axis.
The spectrum of a chaotc guanmnn
system was first suggested by Eugene
P. Wigner, another early master of quan-

POINCARE SECTION OF A HYDROGEN ATOM in a strong mag-
netic field has regions (orange) where the points of the elec-
tron’s trajectory. scatter wildly, indicating chaotic behavior.

tum mechanics. Wigner observed,
had many others, that nuclear phy
does not possess the safe under
nings of atomic and molecular physics;
the origin of the nuclear force s stll
not clearly understood. He therefore
asked whether the statistical properties
of nuclear spectra could be derived
from the assumption that many pa-
rameters in the problem have definite,
but unknown, values. This rather vague
starting point allowed him to find the
maost probable fornmila for the distri-

bution. Oriol Bohigas and Marie-Joya
Glannoni of the Institute of Nuclear
Physzics in Orsay ce, first pointed
out that Wigner's distribution happens
to be exactly what is found for the
spectrum of a chaotic dynamic system.

haos does not seem to limit it-
gelf to the distribution of quan-
tum energy levels, however; it
even appears to work its way into the
wavelike nature of the gquantum world.
The posidon of the electron in the hy-

The section is a slice out of phase space, an abstract six-di-
mensional space: the usual three for the position of a particle
and an additional three for the particle’s momentum.
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drogen atom is described I:ﬂ,-"a wave
pattern. The electron cannot be pin-
pointed in space; it is a cloudlike smear
hovering near the proton. Associated
with each allowed energy level is a sta-
tonary state, which is a wave pattern
that does not change with time. A sta-
tlonary state corresponds quite closely
to the vibrational pattern of a mem-
brane that 1s stretched over a rigid
frame, such as a-drim.

The stationary states of a chaotic
system have surprisingly interesting

ENERGY SPECTRIDM; or distribution of
energy levels, differs markedly between
chaotic and nonchaotic quantum sys-
tems. For a nonchaotic system, such as
a molecular hydrogen lon, (H;*), the
probability of finding two energy levels
close to each other iz quite high. In the
case of a chaotic system such as a Ryd-
berg atom in a strong magnetic field, the

closely matches the typical nuclear spec-
trum derived many years ago by Fu-
gene P, Wigner.

structure, as demonstrated in the early
1980s by Eric Heller of the University
of Washingtorn. He and hiz students
calculated a series of stationary states
for a two-dimensional cavity in the
shape of a stadium. The corresponding
problem in classical mechanics was
known to be chaotic, for a typical tra-
jectory quickly covers most of the
available ground quite evenly. Such be-
havior suggests that the stationary
states might also look random, as if
they had been designed without rhyme

RELATIVE ABSORFPTION

probability is low. The chaotic spectrum = &5

P

INCREASING ENERGY

CORRELATION

TH‘u‘IE {PERIOD)

ABSORPTION OF LIGHT by a hydrogen atom in a strong magnetic field appears to
vary randomly as a function of energy (top), but when the data are analyzed ac-
cording to the mathematical procedure called Fourier analysis, a distinct pattern
emerges (bottom). Each peak in the bottom panel has associated with it a specific
classical periodic orbit {red figures next to peaks).
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or reason. In contrast, Heller discov-
ered that most stationary states are con-
centrated around narrow channels that
form simple shapes inzide the stadinm,
and te called these channels "scars”

[$ee iMustration on te page]. Simi-
lar: structure can al fotind in the
statiopary! states of a yilbdien atom in

tro@magnetm field (80 Bustration
on page 79]. The smoothiiéss of the
fquantum wave forms is preserved from
point to point, but when one steps back:
to view the whole picture, the finger-
print of chaos emerges.

It is possible to connect the chaotic
signature of the energy spectrum to or-
dinary classical mechanics. A clue to
the prescription is provided in Eln-
stein’s 1917 paper. He examined the
phase space of a regular system from
box R and described it geometrically as
filled with surfaces in the shape of a
donut; the motion of the system corre-
sponds to the trajectory of a point over
the surface of a particular donut. The
lrajectory winds its way around the
surface of the donut in a regular man-
ner, but it does not necessarily close on
itself.

In Einstein's picture, the application
of Bohr's correspondence principle to
find the energy levels of the analogous
quantum mechanical system is simple.
The only trajectories that can occur in
nature are those in which the cross
section of the donut encloses an area
erual to an integral multiple of Planck’s
constant, h (2 times the fundamental
gquantum of angular momentum, having
the units of momentum multiplied by
length). It turns out that the integral
multiple is precisely the number that
specifies the corresponding energy level
in the quantum system.

Unformunately, as Einstein clearly saw,
his method cannot be applied il the
system is chaotic, for the trajectory
does not lie on a domat, and there is no
natural area to enclose an integral mul-
tiple of Flanck's constant. A new ap-
proach must be sought to explain the
distribution of gquantum mechanical
energy levels in terms of the chaotic or-
bits of classical mechanics.

Which features of the trajectory of
classical mechanics help us to under-
stand quantum chaos? Hill's discussion
of the moon's irregular orbit because
of the presence of the sun provides a
clue. His work represented the first in-
stance where a particular periodic orbit
is found to be at the bottom of a diffi-
cult mechanical problem. (A periodic
orbit is like a closed track on which the
system is made to run; there are many
of them, although they are isolated and
unstable.) Inspiration can also be drawn
from Poincaréd, who emphasized the





